IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Free-Steering Relaxation Methods for Problems with Strictly Convex Costs and Linear Constraints

Listed author(s):
  • K. Kiwiel
Registered author(s):

    We consider dual coordinate ascent methods for minimizing a strictly convex (possibly nondifferentiable) function subject to linear constraints. Such methods are useful in large-scale applications (e.g., entropy maximization, quadratic programming, network flows), because they are simple, can exploit sparsity and in certain cases are highly parallelizable. We establish their global convergence under weak conditions and a free-steering order of relaxation. Previous comparable results were restricted to special problems with separable costs and equality constraints. Our convergence framework unifies to a certain extent the approaches of Bregman, Censor and Lent, De Pierro and Iusem, and Luo and Tseng, and complements that of Bertsekas and Tseng.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by International Institute for Applied Systems Analysis in its series Working Papers with number wp94089.

    in new window

    Date of creation: Sep 1994
    Handle: RePEc:wop:iasawp:wp94089
    Contact details of provider: Postal:
    A-2361 Laxenburg

    Phone: +43-2236-807-0
    Fax: +43-2236-71313
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Lamond, B. & Stewart, N. F., 1981. "Bregman's balancing method," Transportation Research Part B: Methodological, Elsevier, vol. 15(4), pages 239-248, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:wop:iasawp:wp94089. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.