IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Distance-Based Methods: Ripley's K function vs. K density function

Listed author(s):
  • Marta R. Casanova


  • Vicente Orts
  • Jose M. Albert
  • Jorge Mateu
Registered author(s):

    In this paper, we propose an analytical and methodological comparison between two of the most known distance-based methods in the evaluation of the geographic concentration of economic activity. These two methods are Ripley's K function, a cumulative function popularised by Marcon and Puech (2003) that counts the average number of neighbours of each point within a circle of a given radius, and K density function, a probability density function of point-pair distances introduced by Duranton and Overman (2005), which considers the distribution of distances between pairs of points. To carry out this comparison, we first apply both methodologies to an exhaustive database containing Spanish manufacturing establishments and we evaluate the spatial location patterns obtained from both analysis. After an initial analysis, we realise that although these functions have always been treated as substitutes they should be considered as complementary, as both cumulative function and probability density function provide relevant and necessary information about the distribution of activity in space. Therefore, our next step will be to assess what are the advantages and disadvantages of each methodology from a descriptive and analytical way.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by European Regional Science Association in its series ERSA conference papers with number ersa11p737.

    in new window

    Date of creation: Sep 2011
    Handle: RePEc:wiw:wiwrsa:ersa11p737
    Contact details of provider: Postal:
    Welthandelsplatz 1, 1020 Vienna, Austria

    Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. José M. Albert & Marta R. Casanova & Vicente Orts, 2012. "Spatial location patterns of Spanish manufacturing firms," Papers in Regional Science, Wiley Blackwell, vol. 91(1), pages 107-136, 03.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa11p737. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gunther Maier)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.