IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Differential Evolution Methods for the Fuzzy Extension of Functions

Listed author(s):
  • Luciano Stefanini


    (Department of Economics, Università di Urbino "Carlo Bo")

The paper illustrates a differential evolution (DE) algorithm to calculate the level-cuts of the fuzzy extension of a multidimensional real valued function to fuzzy numbers. The method decomposes the fuzzy extension engine into a set of "nested" min and max box-constrained op- timization problems and uses a form of the DE algorithm, based on multi populations which cooperate during the search phase and specialize, a part of the populations to find the the global min (corresponding to lower branch of the fuzzy extension) and a part of the populations to find the global max (corresponding to the upper branch), both gaining efficiency from the work done for a level-cut to the subsequent ones. A special ver- sion of the algorithm is designed to the case of differentiable functions, for which a representation of the fuzzy numbers is used to improve ef- ficiency and quality of calculations. The included computational results indicate that the DE method is a promising tool as its computational complexity grows on average superlinearly (of degree less than 1.5) in the number of variables of the function to be extended.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: First version, 2007
Download Restriction: no

Paper provided by University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini in its series Working Papers with number 0705.

in new window

Length: 39 pages
Date of creation: 2007
Date of revision: 2007
Handle: RePEc:urb:wpaper:07_05
Contact details of provider: Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:urb:wpaper:07_05. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Carmela Nicoletti)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.