IDEAS home Printed from
   My bibliography  Save this paper

Fermat's treatise on quadrature: A new reading



The Treatise on Quadrature of Fermat (c. 1659), besides containing the first known proof of the computation of the area under a higher parabola, R x+m/n dx, or under a higher hyperbola, R x-m/n dx— with the appropriate limits of integration in each case—, has a second part which was not understood by Fermat’s contemporaries. This second part of the Treatise is obscure and difficult to read and even the great Huygens described it as 'published with many mistakes and it is so obscure (with proofs redolent of error) that I have been unable to make any sense of it'. Far from the confusion that Huygens attributes to it, in this paper we try to prove that Fermat, in writing the Treatise, had a very clear goal in mind and he managed to attain it by means of a simple and original method. Fermat reduced the quadrature of a great number of algebraic curves to the quadrature of known curves: the higher parabolas and hyperbolas of the first part of the paper. Others, he reduced to the quadrature of the circle. We shall see how the clever use of two procedures, quite novel at the time: the change of variables and a particular case of the formula of integration by parts, provide Fermat with the necessary tools to square very easily curves as well-known as the folium of Descartes, the cissoid of Diocles or the witch of Agnesi.

Suggested Citation

  • Jaume Paradís & Josep Pla & Pelegrí Viader, 2004. "Fermat's treatise on quadrature: A new reading," Economics Working Papers 775, Department of Economics and Business, Universitat Pompeu Fabra.
  • Handle: RePEc:upf:upfgen:775

    Download full text from publisher

    File URL:
    File Function: Whole Paper
    Download Restriction: no

    More about this item


    History of mathematics; quadratures; integration methods;

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:775. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.