IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/288.html
   My bibliography  Save this paper

Adaptive approach heuristics for the generalized assignment problem

Author

Abstract

The Generalized Assignment Problem consists in assigning a set of tasks to a set of agents with minimum cost. Each agent has a limited amount of a single resource and each task must be assigned to one and only one agent, requiring a certain amount of the resource of the agent. We present new metaheuristics for the generalized assignment problem based on hybrid approaches. One metaheuristic is a MAX-MIN Ant System (MMAS), an improved version of the Ant System, which was recently proposed by Stutzle and Hoos to combinatorial optimization problems, and it can be seen has an adaptive sampling algorithm that takes in consideration the experience gathered in earlier iterations of the algorithm. Moreover, the latter heuristic is combined with local search and tabu search heuristics to improve the search. A greedy randomized adaptive search heuristic (GRASP) is also proposed. Several neighborhoods are studied, including one based on ejection chains that produces good moves without increasing the computational effort. We present computational results of the comparative performance, followed by concluding remarks and ideas on future research in generalized assignment related problems.

Suggested Citation

  • Helena Ramalhinho-Lourenço & Daniel Serra, 1998. "Adaptive approach heuristics for the generalized assignment problem," Economics Working Papers 288, Department of Economics and Business, Universitat Pompeu Fabra.
  • Handle: RePEc:upf:upfgen:288
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/288.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1989. "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," Operations Research, INFORMS, vol. 37(6), pages 865-892, December.
    2. Laguna, Manuel & Kelly, James P. & Gonzalez-Velarde, JoseLuis & Glover, Fred, 1995. "Tabu search for the multilevel generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 82(1), pages 176-189, April.
    3. Cattrysse, Dirk. G. & Salomon, Marc & Van Wassenhove, Luk N., 1994. "A set partitioning heuristic for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 72(1), pages 167-174, January.
    4. Cattrysse, Dirk G. & Van Wassenhove, Luk N., 1992. "A survey of algorithms for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 60(3), pages 260-272, August.
    5. Marshall L. Fisher & R. Jaikumar & Luk N. Van Wassenhove, 1986. "A Multiplier Adjustment Method for the Generalized Assignment Problem," Management Science, INFORMS, vol. 32(9), pages 1095-1103, September.
    6. Mohammad M. Amini & Michael Racer, 1994. "A Rigorous Computational Comparison of Alternative Solution Methods for the Generalized Assignment Problem," Management Science, INFORMS, vol. 40(7), pages 868-890, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Silva & Daniel Serra, 2008. "Incorporating waiting time in competitive location models: Formulations and heuristics," Economics Working Papers 1091, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Helena Ramalhinho-Lourenço & Rafael Martí & Manuel Laguna, 2001. "Assigning proctors to exams with scatter search," Economics Working Papers 534, Department of Economics and Business, Universitat Pompeu Fabra.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diaz, Juan A. & Fernandez, Elena, 2001. "A Tabu search heuristic for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 132(1), pages 22-38, July.
    2. Jeet, V. & Kutanoglu, E., 2007. "Lagrangian relaxation guided problem space search heuristics for generalized assignment problems," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1039-1056, November.
    3. Robert M. Nauss, 2003. "Solving the Generalized Assignment Problem: An Optimizing and Heuristic Approach," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 249-266, August.
    4. Haddadi, Salim & Ouzia, Hacene, 2004. "Effective algorithm and heuristic for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 153(1), pages 184-190, February.
    5. H. Edwin Romeijn & Dolores Romero Morales, 2001. "Generating Experimental Data for the Generalized Assignment Problem," Operations Research, INFORMS, vol. 49(6), pages 866-878, December.
    6. Norina Szander & Lorenzo Ros-McDonnell & María Victoria De-la-Fuente-Aragón & Robert Vodopivec, 2018. "Sustainable Urban Homecare Delivery with Different Means of Transport," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    7. Narciso, Marcelo G. & Lorena, Luiz Antonio N., 1999. "Lagrangean/surrogate relaxation for generalized assignment problems," European Journal of Operational Research, Elsevier, vol. 114(1), pages 165-177, April.
    8. Amini, Mohammad M. & Racer, Michael & Ghandforoush, Parviz, 1998. "Heuristic sensitivity analysis in a combinatoric environment: An exposition and case study," European Journal of Operational Research, Elsevier, vol. 108(3), pages 604-617, August.
    9. Woodcock, Andrew J. & Wilson, John M., 2010. "A hybrid tabu search/branch & bound approach to solving the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 207(2), pages 566-578, December.
    10. Jafar Rezaei & Negin Salimi, 2015. "Optimal ABC inventory classification using interval programming," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(11), pages 1944-1952, August.
    11. Klose, Andreas & Drexl, Andreas, 2001. "Combinatorial optimisation problems of the assignment type and a partitioning approach," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 545, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Osorio, Maria A. & Laguna, Manuel, 2003. "Logic cuts for multilevel generalized assignment problems," European Journal of Operational Research, Elsevier, vol. 151(1), pages 238-246, November.
    13. Barbas, Javier & Marin, Angel, 2004. "Maximal covering code multiplexing access telecommunication networks," European Journal of Operational Research, Elsevier, vol. 159(1), pages 219-238, November.
    14. June S. Park & Byung Ha Lim & Youngho Lee, 1998. "A Lagrangian Dual-Based Branch-and-Bound Algorithm for the Generalized Multi-Assignment Problem," Management Science, INFORMS, vol. 44(12-Part-2), pages 271-282, December.
    15. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    16. Richard Freling & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2003. "A Branch-and-Price Algorithm for the Multiperiod Single-Sourcing Problem," Operations Research, INFORMS, vol. 51(6), pages 922-939, December.
    17. Pentico, David W., 2007. "Assignment problems: A golden anniversary survey," European Journal of Operational Research, Elsevier, vol. 176(2), pages 774-793, January.
    18. Pessoa, Artur Alves & Hahn, Peter M. & Guignard, Monique & Zhu, Yi-Rong, 2010. "Algorithms for the generalized quadratic assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Technique," European Journal of Operational Research, Elsevier, vol. 206(1), pages 54-63, October.
    19. Lorenzo Ros-McDonnell & M. de-la-Fuente-Aragon & Marija Bogataj, 2012. "An approximate algorithm for optimal logistics of heavy and variable size items," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 1-17, March.
    20. Matusiak, Marek & de Koster, René & Saarinen, Jari, 2017. "Utilizing individual picker skills to improve order batching in a warehouse," European Journal of Operational Research, Elsevier, vol. 263(3), pages 888-899.

    More about this item

    Keywords

    Metaheuristics; generalized assignment; local search; GRASP; tabu search; ant systems;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • L80 - Industrial Organization - - Industry Studies: Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge The email address of this maintainer does not seem to be valid anymore. Please ask the person in charge to update the entry or send us the correct address (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.