IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Adaptive approach heuristics for the generalized assignment problem

The Generalized Assignment Problem consists in assigning a set of tasks to a set of agents with minimum cost. Each agent has a limited amount of a single resource and each task must be assigned to one and only one agent, requiring a certain amount of the resource of the agent. We present new metaheuristics for the generalized assignment problem based on hybrid approaches. One metaheuristic is a MAX-MIN Ant System (MMAS), an improved version of the Ant System, which was recently proposed by Stutzle and Hoos to combinatorial optimization problems, and it can be seen has an adaptive sampling algorithm that takes in consideration the experience gathered in earlier iterations of the algorithm. Moreover, the latter heuristic is combined with local search and tabu search heuristics to improve the search. A greedy randomized adaptive search heuristic (GRASP) is also proposed. Several neighborhoods are studied, including one based on ejection chains that produces good moves without increasing the computational effort. We present computational results of the comparative performance, followed by concluding remarks and ideas on future research in generalized assignment related problems.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.upf.edu/docs/papers/downloads/288.pdf
File Function: Whole Paper
Download Restriction: no

Paper provided by Department of Economics and Business, Universitat Pompeu Fabra in its series Economics Working Papers with number 288.

as
in new window

Length:
Date of creation: May 1998
Date of revision:
Handle: RePEc:upf:upfgen:288
Contact details of provider: Web page: http://www.econ.upf.edu/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Cattrysse, Dirk G. & Van Wassenhove, Luk N., 1992. "A survey of algorithms for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 60(3), pages 260-272, August.
  2. Cattrysse, Dirk. G. & Salomon, Marc & Van Wassenhove, Luk N., 1994. "A set partitioning heuristic for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 72(1), pages 167-174, January.
  3. Marshall L. Fisher & R. Jaikumar & Luk N. Van Wassenhove, 1986. "A Multiplier Adjustment Method for the Generalized Assignment Problem," Management Science, INFORMS, vol. 32(9), pages 1095-1103, September.
  4. Laguna, Manuel & Kelly, James P. & Gonzalez-Velarde, JoseLuis & Glover, Fred, 1995. "Tabu search for the multilevel generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 82(1), pages 176-189, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:288. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.