IDEAS home Printed from https://ideas.repec.org/p/umc/wpaper/1104.html
   My bibliography  Save this paper

Cointegrating MiDaS Regressions and a MiDaS Test

Author

Abstract

This paper introduces cointegrating mixed data sampling (CoMiDaS) regressions, generalizing nonlinear MiDaS regressions in the extant literature. Under a linear mixed-frequency data-generating process, MiDaS regressions provide a parsimoniously parameterized nonlinear alternative when the linear forecasting model is over-parameterized and may be infeasible. In spite of potential correlation of the error term both serially and with the regressors, I find that nonlinear least squares consistently estimates the minimum mean-squared forecast error parameter vector. The exact asymptotic distribution of the difference may be non-standard. I propose a novel testing strategy for nonlinear MiDaS and CoMiDaS regressions against a general but possibly infeasible linear alternative. An empirical application to nowcasting global real economic activity using monthly covariates illustrates the utility of the approach.

Suggested Citation

  • J. Isaac Miller, 2011. "Cointegrating MiDaS Regressions and a MiDaS Test," Working Papers 1104, Department of Economics, University of Missouri.
  • Handle: RePEc:umc:wpaper:1104
    Note: Substantially revised and updated as WP 12-11
    as

    Download full text from publisher

    File URL: https://economics.missouri.edu/working-papers/2012/wp1211_miller.pdf
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas B. Götz & Alain Hecq & Jean‐Pierre Urbain, 2014. "Forecasting Mixed‐Frequency Time Series with ECM‐MIDAS Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 198-213, April.
    2. Hecq A.W. & Urbain J.R.Y.J. & Götz T.B., 2013. "Testing for common cycles in non-stationary VARs with varied frecquency data," Research Memorandum 002, Maastricht University, Graduate School of Business and Economics (GSBE).

    More about this item

    Keywords

    cointegration; mixed-frequency series; mixed data sampling;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:umc:wpaper:1104. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Valerie Kulp). General contact details of provider: http://edirc.repec.org/data/edumous.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.