IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Modeling uncertainty in macroeconomic growth determinants using Gaussian graphical models

  • Adrian Dobra

    (University of Washington)

  • Theo S. Eicher

    (University of Washington)

  • Alexander Lenkoski

    (University of Washington)

Model uncertainty has become a central focus of policy discussion surrounding the determinants of economic growth. Over 140 regressors have been employed in growth empirics due to the proliferation of several new growth theories in the past two decades. Recently Bayesian model averaging (BMA) has been employed to address model uncertainty and to provide clear policy implications by identifying robust growth determinants. The BMA approaches were, however, limited to linear regression models that abstract from possible dependencies embedded in the covariance structures of growth determinants. The recent empirical growth literature has developed jointness measures to highlight such dependencies. We address model uncertainty and covariate dependencies in a comprehensive Bayesian framework that allows for structural learning in linear regressions and Gaussian graphical models. A common prior specification across the entire comprehensive framework provides consistency. Gaussian graphical models allow for a principled analysis of dependency structures, which allows us to generate a much more parsimonious set of fundamental growth determinants. Our empirics are based on a prominent growth dataset with 41 potential economic factors that has been the utilized in numerous previous analyses to account for model uncertainty as well as jointness.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.csss.washington.edu/Papers/wp87.pdf
Download Restriction: no

Paper provided by University of Washington, Department of Economics in its series Working Papers with number UWEC-2009-14-P.

as
in new window

Length:
Date of creation: Dec 2009
Date of revision:
Publication status: Published in Statistical Methodology, Volume
Handle: RePEc:udb:wpaper:uwec-2009-14-p
Contact details of provider: Postal: Box 353330, Seattle, WA 98193-3330
Web page: http://www.econ.washington.edu/
Email:


More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:udb:wpaper:uwec-2009-14-p. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael Goldblatt)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.