IDEAS home Printed from https://ideas.repec.org/p/udb/wpaper/uwec-2009-14-p.html
   My bibliography  Save this paper

Modeling uncertainty in macroeconomic growth determinants using Gaussian graphical models

Author

Listed:
  • Adrian Dobra

    (University of Washington)

  • Theo S. Eicher

    (University of Washington)

  • Alexander Lenkoski

    (University of Washington)

Abstract

Model uncertainty has become a central focus of policy discussion surrounding the determinants of economic growth. Over 140 regressors have been employed in growth empirics due to the proliferation of several new growth theories in the past two decades. Recently Bayesian model averaging (BMA) has been employed to address model uncertainty and to provide clear policy implications by identifying robust growth determinants. The BMA approaches were, however, limited to linear regression models that abstract from possible dependencies embedded in the covariance structures of growth determinants. The recent empirical growth literature has developed jointness measures to highlight such dependencies. We address model uncertainty and covariate dependencies in a comprehensive Bayesian framework that allows for structural learning in linear regressions and Gaussian graphical models. A common prior specification across the entire comprehensive framework provides consistency. Gaussian graphical models allow for a principled analysis of dependency structures, which allows us to generate a much more parsimonious set of fundamental growth determinants. Our empirics are based on a prominent growth dataset with 41 potential economic factors that has been the utilized in numerous previous analyses to account for model uncertainty as well as jointness.

Suggested Citation

  • Adrian Dobra & Theo S. Eicher & Alexander Lenkoski, 2009. "Modeling uncertainty in macroeconomic growth determinants using Gaussian graphical models," Working Papers UWEC-2009-14-P, University of Washington, Department of Economics.
  • Handle: RePEc:udb:wpaper:uwec-2009-14-p
    as

    Download full text from publisher

    File URL: http://www.csss.washington.edu/Papers/wp87.pdf
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:udb:wpaper:uwec-2009-14-p. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael Goldblatt). General contact details of provider: http://edirc.repec.org/data/deuwaus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.