IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/f3f5a961-02ff-4a2b-ab93-4a1f86e54a62.html
   My bibliography  Save this paper

A Method of Moments Estimator of Tail Dependence in Elliptical Copula Models

Author

Listed:
  • Krajina, A.

    (Tilburg University, Center For Economic Research)

Abstract

No abstract is available for this item.

Suggested Citation

  • Krajina, A., 2009. "A Method of Moments Estimator of Tail Dependence in Elliptical Copula Models," Discussion Paper 2009-42, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:f3f5a961-02ff-4a2b-ab93-4a1f86e54a62
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/1096782/2009-42.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Einmahl, J.H.J. & Krajina, A. & Segers, J.J.J., 2007. "A Method of Moments Estimator of Tail Dependence," Other publications TiSEM 6ee60ab8-3c01-4bd9-aa5e-7, Tilburg University, School of Economics and Management.
    2. Asimit, Alexandru V. & Jones, Bruce L., 2007. "Extreme behavior of bivariate elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 53-61, July.
    3. Kaynar, B. & Birbil, S.I. & Frenk, J.B.G., 2007. "Application of a General Risk Management Model to Portfolio Optimization Problems with Elliptical Distributed Returns for Risk Neutral and Risk Averse Decision Makers," ERIM Report Series Research in Management ERS-2007-032-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Einmahl, J.H.J. & de Haan, L.F.M. & Li, D., 2006. "Weighted approximations of tail copula processes with applications to testing the bivariate extreme value condition," Other publications TiSEM 18b65ac3-ba79-4bff-ad53-2, Tilburg University, School of Economics and Management.
    5. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    6. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    7. Hashorva, Enkelejd, 2005. "Extremes of asymptotically spherical and elliptical random vectors," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 285-302, June.
    8. Claudia Klüppelberg & Gabriel Kuhn & Liang Peng, 2008. "Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 701-718, December.
    9. Kaynar, B. & Birbil, S.I. & Frenk, J.B.G., 2007. "Application of a general risk management model to portfolio optimization problems with elliptical distributed returns for risk neutral and risk averse decision makers," Econometric Institute Research Papers EI 2007-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashorva, Enkelejd, 2010. "On the residual dependence index of elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1070-1078, July.
    2. Krajina, A., 2010. "An M-estimator of multivariate tail dependence," Other publications TiSEM 66518e07-db9a-4446-81be-c, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krajina, A., 2010. "An M-estimator of multivariate tail dependence," Other publications TiSEM 66518e07-db9a-4446-81be-c, Tilburg University, School of Economics and Management.
    2. Krajina, A., 2009. "A Method of Moments Estimator of Tail Dependence in Elliptical Copula Models," Other publications TiSEM f3f5a961-02ff-4a2b-ab93-4, Tilburg University, School of Economics and Management.
    3. Lorenzo Ricci & David Veredas, 2012. "TailCoR," Working Papers 1227, Banco de España.
      • Sla{dj}ana Babi'c & Christophe Ley & Lorenzo Ricci & David Veredas, 2020. "TailCoR," Papers 2011.14817, arXiv.org.
    4. Einmahl, J.H.J. & Krajina, A. & Segers, J.J.J., 2007. "A Method of Moments Estimator of Tail Dependence," Discussion Paper 2007-80, Tilburg University, Center for Economic Research.
    5. Bormann, Carsten & Schienle, Melanie & Schaumburg, Julia, 2014. "Beyond dimension two: A test for higher-order tail risk," SFB 649 Discussion Papers 2014-042, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    7. Derumigny, A. & Fermanian, J.-D., 2022. "Identifiability and estimation of meta-elliptical copula generators," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    8. Maria Grazia Zoia & Gianmarco Vacca & Laura Barbieri, 2020. "Modeling Multivariate Financial Series and Computing Risk Measures via Gram–Charlier-Like Expansions," Risks, MDPI, vol. 8(4), pages 1-21, November.
    9. Di Bernardino, Elena & Laloë, Thomas & Pakzad, Cambyse, 2024. "Estimation of extreme multivariate expectiles with functional covariates," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    10. Carsten Bormann & Julia Schaumburg & Melanie Schienle, 2016. "Beyond Dimension two: A Test for Higher-Order Tail Risk," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 552-580.
    11. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 151-162, June.
    12. Juan-Juan Cai & John H. J. Einmahl & Laurens Haan & Chen Zhou, 2015. "Estimation of the marginal expected shortfall: the mean when a related variable is extreme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 417-442, March.
    13. Li, Deyuan & Peng, Liang, 2009. "Goodness-of-fit test for tail copulas modeled by elliptical copulas," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1097-1104, April.
    14. Cai, J., 2012. "Estimation concerning risk under extreme value conditions," Other publications TiSEM a92b089f-bc4c-41c2-b297-c, Tilburg University, School of Economics and Management.
    15. Manner, Hans & Segers, Johan, 2011. "Tails of correlation mixtures of elliptical copulas," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 153-160, January.
    16. Jaser Miriam & Haug Stephan & Min Aleksey, 2017. "A simple non-parametric goodness-of-fit test for elliptical copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 330-353, December.
    17. Asimit, Alexandru V. & Gerrard, Russell & Hou, Yanxi & Peng, Liang, 2016. "Tail dependence measure for examining financial extreme co-movements," Journal of Econometrics, Elsevier, vol. 194(2), pages 330-348.
    18. Jamie Fairbrother & Amanda Turner & Stein W. Wallace, 2018. "Scenario Generation for Single-Period Portfolio Selection Problems with Tail Risk Measures: Coping with High Dimensions and Integer Variables," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 472-491, August.
    19. Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
    20. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:f3f5a961-02ff-4a2b-ab93-4a1f86e54a62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.