IDEAS home Printed from https://ideas.repec.org/p/str/wpaper/1114.html
   My bibliography  Save this paper

Understanding Liquidity and Credit Risks in the Financial Crisis

Author

Listed:
  • Deborah Gefang

    () (Department of Economics, University of Lancaster)

  • Gary Koop

    () (Department of Economics, University of Strathclyde)

  • Simon Potter

    () (Research and Statistics Group, Federal Reserve Bank of New York)

Abstract

This paper develops a structured dynamic factor model for the spreads between London Interbank Offered Rate (LIBOR) and overnight index swap (OIS) rates for a panel of banks. Our model involves latent factors which relect liquidity and credit risk. Our empirical results show that surges in the short term LIBOR-OIS spreads during the 2007-2009 financial crisis were largely driven by liquidity risk. However, credit risk played a more significant role in the longer term (twelve-month) LIBOR-OIS spread. The liquidity risk factors are more volatile than the credit risk factor. Most of the familiar events in the financial crisis are linked more to movements in liquidity risk than credit risk.

Suggested Citation

  • Deborah Gefang & Gary Koop & Simon Potter, 2011. "Understanding Liquidity and Credit Risks in the Financial Crisis," Working Papers 1114, University of Strathclyde Business School, Department of Economics.
  • Handle: RePEc:str:wpaper:1114
    as

    Download full text from publisher

    File URL: http://www.strath.ac.uk/media/1newwebsite/departmentsubject/economics/research/researchdiscussionpapers/2011/11-14_Final.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Campbell, John Y & Ammer, John, 1993. "What Moves the Stock and Bond Markets? A Variance Decomposition for Long-Term Asset Returns," Journal of Finance, American Finance Association, vol. 48(1), pages 3-37, March.
    2. John B. Taylor & John C. Williams, 2009. "A black swan in the money market," Proceedings, Federal Reserve Bank of San Francisco, issue Jan.
    3. Rajdeep Sengupta & Yu Man Tam, 2008. "The LIBOR-OIS spread as a summary indicator," Monetary Trends, Federal Reserve Bank of St. Louis, issue Nov.
    4. Tao Wu, 2008. "On the effectiveness of the Federal Reserve's new liquidity facilities," Working Papers 0808, Federal Reserve Bank of Dallas.
    5. John Taylor & John Williams, 2008. "Further Results on a Black Swan in the Money Market," Discussion Papers 07-046, Stanford Institute for Economic Policy Research.
    6. Piazzesi, Monika & Swanson, Eric T., 2008. "Futures prices as risk-adjusted forecasts of monetary policy," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 677-691, May.
    7. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    8. Craig S. Hakkio & William R. Keeton, 2009. "Financial stress: what is it, how can it be measured, and why does it matter?," Economic Review, Federal Reserve Bank of Kansas City, vol. 94(Q II), pages 5-50.
    9. Markus K. Brunnermeier, 2009. "Deciphering the Liquidity and Credit Crunch 2007-2008," Journal of Economic Perspectives, American Economic Association, vol. 23(1), pages 77-100, Winter.
    10. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    11. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    12. Fran├žois-Louis Michaud & Christian Upper, 2008. "What drives interbank rates? Evidence from the Libor panel," BIS Quarterly Review, Bank for International Settlements, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    LIBOR-OIS spread; factor model; credit default swap; Bayesian;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:str:wpaper:1114. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kirsty Hall). General contact details of provider: http://edirc.repec.org/data/edstruk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.