IDEAS home Printed from
   My bibliography  Save this paper

Valuing Path Dependent Options in the Variance-Gamma Model by Monte Carlo with a Gamma Bridge


  • Nick Webber
  • Claudia Ribeiro


No abstract is available for this item.

Suggested Citation

  • Nick Webber & Claudia Ribeiro, 2003. "Valuing Path Dependent Options in the Variance-Gamma Model by Monte Carlo with a Gamma Bridge," Computing in Economics and Finance 2003 4, Society for Computational Economics.
  • Handle: RePEc:sce:scecf3:4

    Download full text from publisher

    File URL:
    File Function: main text
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Nguyen Nguyet & Ökten Giray, 2016. "The acceptance-rejection method for low-discrepancy sequences," Monte Carlo Methods and Applications, De Gruyter, vol. 22(2), pages 133-148, June.
    2. Gian P. Cervellera & Marco P. Tucci, 2017. "A note on the Estimation of a Gamma-Variance Process: Learning from a Failure," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 363-385, March.
    3. repec:taf:quantf:v:17:y:2017:i:11:p:1683-1695 is not listed on IDEAS
    4. Bernard, Carole & Le Courtois, Olivier & Quittard-Pinon, François, 2008. "Pricing derivatives with barriers in a stochastic interest rate environment," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2903-2938, September.

    More about this item


    Monte Carlo simulations; Bridge method; Variance-gamma; Option valuation;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf3:4. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.