IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Purely discontinuous Levy processes and power variation: inference for integrated volatility and the scale parameter

Listed author(s):
  • Jeannette H.C. Woerner
Registered author(s):

    This paper provides consistency and a distributional result for an estimate of the integrated volatility in different Levy type stochastic volatility models based on high frequency data. As an estimator we consider the p-th power variation, i.e. the sum of the p-th power of the absolute value of the log-price returns, allowing irregularly spaced data. Furthermore, we derive conditions on the mean process under which it is negligible. This allows us more flexibility in modelling, namely to include further jump components or even to leave the framework of semimartingales by adding a certain fractional Brownian motion. As a special case our method includes an estimating procedure for the scale parameter of discretely observed Levy processes.Â

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Oxford Financial Research Centre in its series OFRC Working Papers Series with number 2003mf08.

    in new window

    Date of creation: 2003
    Handle: RePEc:sbs:wpsefe:2003mf08
    Contact details of provider: Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sbs:wpsefe:2003mf08. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maxine Collett)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.