IDEAS home Printed from https://ideas.repec.org/p/rio/texdis/445.html
   My bibliography  Save this paper

Statistical methods for modelling neural networks

Author

Listed:
  • Marcelo C. Medeiros

    (Department of Economics PUC-Rio)

  • Timo Terasvirta

    (Department of Economic Statistics, Stockholm School of Economics)

Abstract

In this paper modelling time series by single hidden layer feedforward neural network models is considered. A coherent modelling strategy based on statistical inference is discussed. The problems of selecting the variables and the number of hidden units are solved by using statistical model selection criteria and tests. Misspecification tests for evaluating an estimated neural network model are considered. Forecasting with neural network models is discussed and an application to a real time series is presented.

Suggested Citation

  • Marcelo C. Medeiros & Timo Terasvirta, 2001. "Statistical methods for modelling neural networks," Textos para discussão 445, Department of Economics PUC-Rio (Brazil).
  • Handle: RePEc:rio:texdis:445
    as

    Download full text from publisher

    File URL: http://www.econ.puc-rio.br/uploads/adm/trabalhos/files/td445.pdf
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rio:texdis:445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/dpucrbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.