IDEAS home Printed from
   My bibliography  Save this paper

Knowledge flows percolation model – a new model for the relation between knowledge and innovation


  • Popescul, Daniela


The present paper proposes a new way of thinking regarding the relation between innovation and knowledge using a Physics-borrowed model, trying to prove whether knowledge resources can „flow” (be percolated) in a network or a grid, in order to be transformed in technological innovation. In the Knowledge Flow Percolation Model centre, human beings are seen as thinking electrons, both consuming and generating knowledge flow. Through the inter-dependent actions of individuals, knowledge circulates inside different types of organisations, allowing functioning and innovating in order to obtain competitive advantages. The model can be extended also at a national level, and some assumptions of self similarity appear in this process of extension. The model must be seen as a proposal for the research community and as a basis for future observations regarding the importance of knowledge flows in innovation.

Suggested Citation

  • Popescul, Daniela, 2012. "Knowledge flows percolation model – a new model for the relation between knowledge and innovation," MPRA Paper 51746, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:51746

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. Whitmore, G A, 1970. "Third-Degree Stochastic Dominance," American Economic Review, American Economic Association, vol. 60(3), pages 457-459, June.
    2. Guo, Xu & Zhu, Xuehu & Wong, Wing-Keung & Zhu, Lixing, 2013. "A note on almost stochastic dominance," Economics Letters, Elsevier, vol. 121(2), pages 252-256.
    3. Eeckhoudt, Louis & Schlesinger, Harris & Tsetlin, Ilia, 2009. "Apportioning of risks via stochastic dominance," Journal of Economic Theory, Elsevier, vol. 144(3), pages 994-1003, May.
    4. Guo, Xu & Post, Thierry & Wong, Wing-Keung & Zhu, Lixing, 2014. "Moment conditions for Almost Stochastic Dominance," Economics Letters, Elsevier, vol. 124(2), pages 163-167.
    5. Meyer, Jack, 1977. "Second Degree Stochastic Dominance with Respect to a Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 477-487, June.
    6. Larry Y. Tzeng & Rachel J. Huang & Pai-Ta Shih, 2013. "Revisiting Almost Second-Degree Stochastic Dominance," Management Science, INFORMS, vol. 59(5), pages 1250-1254, May.
    7. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," Review of Economic Studies, Oxford University Press, vol. 25(2), pages 65-86.
    8. Thierry Post & Haim Levy, 2005. "Does Risk Seeking Drive Stock Prices? A Stochastic Dominance Analysis of Aggregate Investor Preferences and Beliefs," Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 925-953.
    9. Harry Markowitz, 1952. "The Utility of Wealth," Journal of Political Economy, University of Chicago Press, vol. 60, pages 151-151.
    10. Louis Eeckhoudt & Harris Schlesinger, 2006. "Putting Risk in Its Proper Place," American Economic Review, American Economic Association, vol. 96(1), pages 280-289, March.
    11. Menezes, C & Geiss, C & Tressler, J, 1980. "Increasing Downside Risk," American Economic Review, American Economic Association, vol. 70(5), pages 921-932, December.
    12. Wing-Keung Wong & Chenghu Ma, 2005. "Preferences over Meyer’s Location-Scale Family," Departmental Working Papers wp0506, National University of Singapore, Department of Economics.
    13. Levy, Moshe, 2009. "Almost Stochastic Dominance and stocks for the long run," European Journal of Operational Research, Elsevier, vol. 194(1), pages 250-257, April.
    14. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    15. Michel M. Denuit & Louis Eeckhoudt, 2010. "A General Index of Absolute Risk Attitude," Management Science, INFORMS, vol. 56(4), pages 712-715, April.
    16. Post, Thierry & Versijp, Philippe, 2007. "Multivariate Tests for Stochastic Dominance Efficiency of a Given Portfolio," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(02), pages 489-515, June.
    17. Haim Levy, 1992. "Stochastic Dominance and Expected Utility: Survey and Analysis," Management Science, INFORMS, vol. 38(4), pages 555-593, April.
    18. Fong, Wai Mun & Lean, Hooi Hooi & Wong, Wing Keung, 2008. "Stochastic dominance and behavior towards risk: The market for Internet stocks," Journal of Economic Behavior & Organization, Elsevier, vol. 68(1), pages 194-208, October.
    19. Wong, Wing-Keung, 2007. "Stochastic dominance and mean-variance measures of profit and loss for business planning and investment," European Journal of Operational Research, Elsevier, vol. 182(2), pages 829-843, October.
    20. Bali, Turan G. & Demirtas, K. Ozgur & Levy, Haim & Wolf, Avner, 2009. "Bonds versus stocks: Investors' age and risk taking," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 817-830, September.
    21. Moshe Leshno & Haim Levy, 2002. "Preferred by "All" and Preferred by "Most" Decision Makers: Almost Stochastic Dominance," Management Science, INFORMS, vol. 48(8), pages 1074-1085, August.
    22. Haim Levy & Moshe Leshno & Boaz Leibovitch, 2010. "Economically relevant preferences for all observed epsilon," Annals of Operations Research, Springer, vol. 176(1), pages 153-178, April.
    23. Chan, Raymond H. & Clark, Ephraim & Wong, Wing-Keung, 2012. "On the Third Order Stochastic Dominance for Risk-Averse and Risk-Seeking Investors," MPRA Paper 42676, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bogner, Kristina, 2015. "The effect of project funding on innovative performance: An agent-based simulation model," Hohenheim Discussion Papers in Business, Economics and Social Sciences 10-2015, University of Hohenheim, Faculty of Business, Economics and Social Sciences.

    More about this item


    technological innovation; knowledge; knowledge flows; knowledge flows percolation model;

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • M12 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Personnel Management; Executives; Executive Compensation
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:51746. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.