IDEAS home Printed from
   My bibliography  Save this paper

Multi-variate quickest detection of significant change process


  • Szajowski, Krzysztof


The paper deals with a mathematical model of a surveillance system based on a net of sensors. The signals acquired by each node of the net are Markovian process, have two different transition probabilities, which depends on the presence or absence of a intruder nearby. The detection of the transition probability change at one node should be confirmed by a detection of similar change at some other sensors. Based on a simple game the model of a fusion center is then constructed. The aggregate function defined on the net is the background of the definition of a non-cooperative stopping game which is a model of the multivariate disorder detection

Suggested Citation

  • Szajowski, Krzysztof, 2011. "Multi-variate quickest detection of significant change process," MPRA Paper 33838, University Library of Munich, Germany, revised 19 Sep 2011.
  • Handle: RePEc:pra:mprapa:33838

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    More about this item


    voting stopping rule; majority voting rule; monotone voting strategy; change-point problems; quickest detection; sequential detection; simple game;

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:33838. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.