IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/20756.html
   My bibliography  Save this paper

Modeling urban evolution by identifying spatiotemporal patterns and applying methods of artificial intelligence.Case study: Athens, Greece

Author

Listed:
  • Photis, Yorgos N.
  • Manetos, Panos
  • Grekoussis, George

Abstract

While during the past decades, urban areas experience constant slow population growth, the spatial patterns they form, by means of their limits and borders, are rapidly changing in a complex way. Furthermore, urban areas continue to expand to the expense of "rural” intensifying urban sprawl. The main aim of this paper is the definition of the evolution of urban areas and more specifically, the specification of an urban model, which deals simultaneously with the modification of population and building use patterns. Classical theories define city geographic border, with the Aristotelian division of 0 or 1 and are called fiat geographic boundaries. But the edge of a city and the urbanization "degree" is something not easily distinguishable. Actually, the line that city ends and rural starts is vague. In this respect a synthetic spatio - temporal methodology is described which, through the adaptation of different computational methods aims to assist planners and decision makers to gain an insight in urban - rural transition. Fuzzy Logic and Neural Networks are recruited to provide a precise image of spatial entities, further exploited in a twofold way. First for analysis and interpretation of up - to - date urban evolution and second, for the formulation of a robust spatial simulation model, the theoretical background of which is that the spatial contiguity between members of the same or different groups is one of the key factors in their evolution. The paper finally presents the results of the model application in the prefecture of Attica in Greece, unveiling the role of the Athens Metropolitan Area to its current and future evolution, by illustrating maps of urban growth dynamics.

Suggested Citation

  • Photis, Yorgos N. & Manetos, Panos & Grekoussis, George, 2003. "Modeling urban evolution by identifying spatiotemporal patterns and applying methods of artificial intelligence.Case study: Athens, Greece," MPRA Paper 20756, University Library of Munich, Germany, revised 2003.
  • Handle: RePEc:pra:mprapa:20756
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/20756/1/MPRA_paper_20756.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    urban growth; urban dynamics; neural networks; fuzzy logic; Greece; Athens;
    All these keywords.

    JEL classification:

    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:20756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.