IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Bilateral Approach to the Secretary Problem

Listed author(s):
  • David M., Ramsey
  • Krzysztof, Szajowski

A mathematical model of competitive selection of the applicants for a post is considered. There are N applicants of similar qualifications on an interview list. The applicants come in a random order and their salary demands are distinct. Two managers, I and II, will interview them one at a time. The aim of the manager is to obtain the applicant which demands minimal salary. The candidate can be accepted only at the moment of its appearance. When both manager want to accept the same candidate, then some rule of assignment to one of the manager is applied. Any candidate hired by the manager will accept the offer with some given probability. An candidate can be hired only at the moment of its appearance. At each moment n one candidate is presented. The considered problem is a generalisation of the best choice problem with uncertain employment and the game version of it with priority or random priority. The general stopping game model is constructed. The algorithms of construction of the game value and the equilibrium strategies are given. An example is solved.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

File URL:
File Function: revised version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 19888.

in new window

Date of creation: 2000
Date of revision: 2003
Handle: RePEc:pra:mprapa:19888
Contact details of provider: Postal:
Ludwigstra├če 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:19888. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.