IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

An Intelligent Knowledge Management System from a Semantic Perspective

  • Mazilescu, Vasile
Registered author(s):

    Abstract. Knowledge Management Systems (KMS) are important tools by which organizations can better use information and, more importantly, manage knowledge. Unlike other strategies, knowledge management (KM) is difficult to define because it encompasses a range of concepts, management tasks, technologies, and organizational practices, all of which come under the umbrella of the information management. Semantic approaches allow easier and more efficient training, maintenance, and support knowledge. Current ICT markets are dominated by relational databases and document-centric information technologies, procedural algorithmic programming paradigms, and stack architecture. A key driver of global economic expansion in the coming decade is the build-out of broadband telecommunications and the deployment of intelligent services bundling. This paper introduces the main characteristics of an Intelligent Knowledge Management System as a multiagent system used in a Learning Control Problem (IKMSLCP), from a semantic perspective. We describe an intelligent KM framework, allowing the observer (a human agent) to learn from experience. This framework makes the system dynamic (flexible and adaptable) so it evolves, guaranteeing high levels of stability when performing his domain problem P. To capture by the agent who learn the control knowledge for solving a task-allocation problem, the control expert system uses at any time, an internal fuzzy knowledge model of the (business) process based on the last knowledge model.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: original version
    Download Restriction: no

    Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 11097.

    in new window

    Date of creation: 14 Oct 2008
    Date of revision:
    Publication status: Published in The Annals of the Dunarea de Jos University. Fascicle I. Economics and Applied Informatics, No. XIV, ISSN 1584-0409.No. XI(2008): pp. 37-46
    Handle: RePEc:pra:mprapa:11097
    Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
    Phone: +49-(0)89-2180-2219
    Fax: +49-(0)89-2180-3900
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:11097. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.