IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/xb6vq.html
   My bibliography  Save this paper

The Average Uneven Mortality index: Building on the "e-dagger" measure of lifespan inequality

Author

Listed:
  • Bonetti, Marco
  • Basellini, Ugofilippo
  • NIGRI, ANDREA

Abstract

In recent years, lifespan inequality has become an important indicator of population health, alongside more established longevity measures. Uncovering the statistical properties of lifespan inequality measures can provide novel insights on the study of mortality developments. We revisit the "e-dagger" measure of lifespan inequality, introduced in Vaupel and Canudas-Romo (2003). We note that, conditioning on surviving at least until age a, e-dagger(a) is equal to the covariance between the conditional lifespan random variable Ta and its transformation through its own cumulative hazard function (hence generalizing a result first noted in Schmertmann, 2020). We then derive an upper bound for e-dagger(a). Leveraging this result, we introduce the "Average Uneven Mortality" (AUM) index, a novel relative mortality index that can be used to analyze mortality patterns. We discuss some general features of the index, including its relationship with a constant ("even") force of mortality, and we study how it changes over time. The use of the AUM index is illustrated through an application to observed period and cohort death rates as well as to period life-table death rates from the Human Mortality Database. We explore the behavior of the index across age and over time, and we study its relationship with life expectancy. The AUM index at birth declined over time until the 1950s, when it reverted its trend. The index generally increases over age and reduces with increasing values of life expectancy, with differences between the period and cohort perspectives. We elaborate on Vaupel and Canudas-Romo’s e-dagger measure, deriving its upper bound. We exploit this result to introduce a novel mortality indicator, which enlarges the toolbox of available methods for the study of mortality dynamics. We also develop some new routines to compute e-dagger(a) and σ_Ta from death rates, and show that they have higher precision when compared to conventional and available functions, particularly for calculations involving older ages.

Suggested Citation

  • Bonetti, Marco & Basellini, Ugofilippo & NIGRI, ANDREA, 2023. "The Average Uneven Mortality index: Building on the "e-dagger" measure of lifespan inequality," SocArXiv xb6vq, Center for Open Science.
  • Handle: RePEc:osf:socarx:xb6vq
    DOI: 10.31219/osf.io/xb6vq
    as

    Download full text from publisher

    File URL: https://osf.io/download/642a8eecd9cfc32b2eb3cef5/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/xb6vq?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:cai:popine:popu_p2001_13n1_0171 is not listed on IDEAS
    2. James W. Vaupel & Zhen Zhang, 2012. "The difference between alternative averages," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(15), pages 419-428.
    3. Nathan Keyfitz, 1977. "What difference would it make if cancer were eradicated? An examination of the taeuber paradox," Demography, Springer;Population Association of America (PAA), vol. 14(4), pages 411-418, November.
    4. Carl Schmertmann, 2020. "Revivorship and life lost to mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 42(17), pages 497-512.
    5. John Wilmoth & Shiro Horiuchi, 1999. "Rectangularization revisited: Variability of age at death within human populations," Demography, Springer;Population Association of America (PAA), vol. 36(4), pages 475-495, November.
    6. Linh Hoang Khanh Dang & Carlo Giovanni Camarda & France Meslé & Nadine Ouellette & Jean-Marie Robine & Jacques Vallin, 2023. "The question of the human mortality plateau: Contrasting insights by longevity pioneers," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 48(11), pages 321-338.
    7. Vladimir Canudas-Romo, 2010. "Three measures of longevity: Time trends and record values," Demography, Springer;Population Association of America (PAA), vol. 47(2), pages 299-312, May.
    8. Alyson Raalte & Hal Caswell, 2013. "Perturbation Analysis of Indices of Lifespan Variability," Demography, Springer;Population Association of America (PAA), vol. 50(5), pages 1615-1640, October.
    9. James Vaupel & Vladimir Romo, 2003. "Decomposing change in life expectancy: A bouquet of formulas in honor of Nathan Keyfitz’s 90th birthday," Demography, Springer;Population Association of America (PAA), vol. 40(2), pages 201-216, May.
    10. Ryan D. Edwards & Shripad Tuljapurkar, 2005. "Inequality in Life Spans and a New Perspective on Mortality Convergence Across Industrialized Countries," Population and Development Review, The Population Council, Inc., vol. 31(4), pages 645-674, December.
    11. Marie-Pier Bergeron-Boucher & Marcus Ebeling & Vladimir Canudas-Romo, 2015. "Decomposing changes in life expectancy: Compression versus shifting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(14), pages 391-424.
    12. Siu Cheung & Jean-Marie Robine & Edward Tu & Graziella Caselli, 2005. "Three dimensions of the survival curve: horizontalization, verticalization, and longevity extension," Demography, Springer;Population Association of America (PAA), vol. 42(2), pages 243-258, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia Zanotto & Vladimir Canudas-Romo & Stefano Mazzuco, 2021. "A Mixture-Function Mortality Model: Illustration of the Evolution of Premature Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 1-27, March.
    2. Marie-Pier Bergeron-Boucher & Marcus Ebeling & Vladimir Canudas-Romo, 2015. "Decomposing changes in life expectancy: Compression versus shifting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(14), pages 391-424.
    3. Gonzaga, Marcos Roberto & Queiroz, Bernardo L & Lima, Everton, 2017. "Compression of mortality: the evolution in the variability in the age of death in Latin America," OSF Preprints pdnfk, Center for Open Science.
    4. Duncan Gillespie & Meredith Trotter & Shripad Tuljapurkar, 2014. "Divergence in Age Patterns of Mortality Change Drives International Divergence in Lifespan Inequality," Demography, Springer;Population Association of America (PAA), vol. 51(3), pages 1003-1017, June.
    5. Aburto, José Manuel & Basellini, Ugofilippo & Baudisch, Annette & Villavicencio, Francisco, 2022. "Drewnowski’s index to measure lifespan variation: Revisiting the Gini coefficient of the life table," Theoretical Population Biology, Elsevier, vol. 148(C), pages 1-10.
    6. Serena Vigezzi & Jose Manuel Aburto & Iñaki Permanyer & Virginia Zarulli, 2022. "Divergent trends in lifespan variation during mortality crises," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 46(11), pages 291-336.
    7. Viorela Diaconu & Nadine Ouellette & Robert Bourbeau, 2020. "Modal lifespan and disparity at older ages by leading causes of death: a Canada-U.S. comparison," Journal of Population Research, Springer, vol. 37(4), pages 323-344, December.
    8. Jos'e Manuel Aburto & Ugofilippo Basellini & Annette Baudisch & Francisco Villavicencio, 2021. "Drewnowski's index to measure lifespan variation: Revisiting the Gini coefficient of the life table," Papers 2111.11256, arXiv.org.
    9. José M. Aburto & Alyson A. van Raalte, 2017. "Lifespan dispersion in times of life expectancy fluctuation: the case of Central and Eastern Europe," MPIDR Working Papers WP-2017-018, Max Planck Institute for Demographic Research, Rostock, Germany.
    10. Patrick Meyer & Gregory Ponthiere, 2020. "Human lifetime entropy in a historical perspective (1750–2014)," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 14(1), pages 129-167, January.
    11. Alyson van Raalte & Pekka Martikainen & Mikko Myrskylä, 2014. "Lifespan Variation by Occupational Class: Compression or Stagnation Over Time?," Demography, Springer;Population Association of America (PAA), vol. 51(1), pages 73-95, February.
    12. Alyson Raalte & Hal Caswell, 2013. "Perturbation Analysis of Indices of Lifespan Variability," Demography, Springer;Population Association of America (PAA), vol. 50(5), pages 1615-1640, October.
    13. Aburto, José Manuel & di Lego, Vanessa & Riffe, Tim & Kashyap, Ridhi & van Raalte, Alyson & Torrisi, Orsola, 2023. "A global assessment of the impact of violence on lifetime uncertainty," LSE Research Online Documents on Economics 118196, London School of Economics and Political Science, LSE Library.
    14. Seaman, Rosie & Riffe, Tim & Leyland, Alastair H. & Popham, Frank & van Raalte, Alyson, 2019. "The increasing lifespan variation gradient by area-level deprivation: A decomposition analysis of Scotland 1981–2011," Social Science & Medicine, Elsevier, vol. 230(C), pages 147-157.
    15. Alyson A. van Raalte & Hal Caswell, 2012. "Perturbation analysis of indices of lifespan variability," MPIDR Working Papers WP-2012-004, Max Planck Institute for Demographic Research, Rostock, Germany.
    16. Aburto, José Manuel & Kristensen, Frederikke Frehr & Sharp, Paul, 2021. "Black-white disparities during an epidemic: Life expectancy and lifespan disparity in the US, 1980–2000," Economics & Human Biology, Elsevier, vol. 40(C).
    17. Bergeron-Boucher, Marie-Pier & Vázquez-Castillo, Paola & Missov, Trifon, 2022. "A modal age at death approach to forecasting mortality," SocArXiv 5zr2k, Center for Open Science.
    18. Jose Manuel Aburto & Jesús-Adrián Alvarez & Francisco Villavicencio & James W. Vaupel, 2019. "The threshold age of the lifetable entropy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(4), pages 83-102.
    19. Ugofilippo Basellini & Vladimir Canudas-Romo & Adam Lenart, 2019. "Location–Scale Models in Demography: A Useful Re-parameterization of Mortality Models," European Journal of Population, Springer;European Association for Population Studies, vol. 35(4), pages 645-673, October.
    20. Jorge M. Uribe & Helena Chuliá & Montserrat Guillen, 2018. "Trends in the Quantiles of the Life Table Survivorship Function," European Journal of Population, Springer;European Association for Population Studies, vol. 34(5), pages 793-817, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:xb6vq. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.