IDEAS home Printed from https://ideas.repec.org/p/oec/elsaab/192-en.html

Faces of joblessness: Characterising employment barriers to inform policy

Author

Listed:
  • Rodrigo Fernandez

    (OECD)

  • Herwig Immervoll

    (OECD)

  • Daniele Pacifico

    (OECD)

  • Céline Thévenot

    (OECD)

Abstract

This paper proposes a novel method for identifying and visualising key employment obstacles that may prevent individuals from participating fully in the labour market. The approach is intended to complement existing sources of information that governments use when designing and implementing activation and employment-support policies. In particular, it aims to provide individual and household perspectives on employment problems, which may be missed when relying on common labour-force statistics or on administrative data, but which are relevant for targeting and tailoring support programmes and related policy interventions. A first step describes a series of employment-barrier indicators at the micro level, comprising three domains: work-related capabilities, financial incentives and employment opportunities. For each domain, a selected set of concrete employment barriers are quantified using the EU-SILC multi-purpose household survey. In a second step, a statistical clustering method (latent class analysis), is used to establish profiles and patterns of employment barriers among individuals with no or weak labour-market attachment. A detailed illustration for two countries (Estonia and Spain) shows that “short-hand” groupings that are often highlighted in the policy debate, such as “youth” or “older workers”, are in fact composed of multiple distinct sub-groups that face very different combinations of employment barriers and likely require different policy approaches. Results also indicate that individuals typically face two or more simultaneous employment obstacles suggesting that addressing one barrier at a time may not have the intended effect on employment levels. From a policy perspective, the results support calls for carefully sequencing activation and employment support measures, and for coordinating them across policy domains and institutions. Cet article propose une nouvelle méthode pour identifier et visualiser les obstacles qui empêchent les individus éloignés de l’emploi de s’intégrer pleinement au marché du travail. L’approche se positionne en complément des sources d’information actuellement utilisées par les administrations pour la conception et la mise en oeuvre des politiques d’activation et de retour à l’emploi. Elle fournit une nouvelle perspective, au niveau des individus et des familles, sur les barrières à l’emploi qui ne sont pas capturées par les approches s’appuyant uniquement sur des données administratives et sur des statistiques sur le marché du travail, qui peut s’avérer très utile pour cibler et adapter des programmes sociaux. La première partie décrit, au niveau microéconomique, un ensemble de barrières à l’emploi couvrant trois domaines : les capacités individuelles (liées au travail), les incitations financières (à travailler) et les opportunités (de trouver un emploi). Pour chaque domaine, des barrières concrètes sont mesurées à l’aide de l’enquête EU-SILC. Ensuite, une méthode de classification, le modèle à Classes Latentes, est utilisée pour regrouper les individus dont l’attachement au marché du travail est inexistant ou très faible sur la base des barrières à l’emploi auxquelles ils font face. La méthode est illustrée par des résultats détaillés sur deux pays (Estonie et Espagne). Les résultats montrent que des groupes souvent identifiés dans le débat politique par des caractéristiques simples telles que « les jeunes » ou « les travailleurs âgés » sont en réalité composés de sous-groupes confrontés à des combinaisons de problèmes très différentes et nécessitant donc des programmes et interventions différents. Très fréquemment, les individus font face à plus d’une barrière à la fois. Ceci suggère que les politiques ciblant les problèmes de manière isolée pourraient avoir un effet sur l’emploi moindre qu’escompté. Placés dans une perspective de politique sociale, ces résultats invitent à soigneusement séquencer les programmes d’activation et de retour à l’emploi et à les coordonner entre les différentes institutions.

Suggested Citation

  • Rodrigo Fernandez & Herwig Immervoll & Daniele Pacifico & Céline Thévenot, 2016. "Faces of joblessness: Characterising employment barriers to inform policy," OECD Social, Employment and Migration Working Papers 192, OECD Publishing.
  • Handle: RePEc:oec:elsaab:192-en
    DOI: 10.1787/5jlwvz47xptj-en
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chartouni Carole & Holzmann Robert & Paez Gustavo N., 2020. "Not everyone is engaged: an innovative approach to measure engagement levels on the labor market," IZA Journal of Labor Policy, Sciendo & Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 10(1), pages 1-25, March.
    2. James Browne & Herwig Immervoll & Rodrigo Fernandez & Dirk Neumann & Daniele Pacifico & Céline Thévenot, 2018. "Faces of joblessness in Ireland: A People-centred perspective on employment barriers and policies," OECD Social, Employment and Migration Working Papers 209, OECD Publishing.
    3. Yosuke Jin & Aida Caldera Sánchez & Pilar Garcia Perea, 2017. "Reforms for more and better quality jobs in Spain," OECD Economics Department Working Papers 1386, OECD Publishing.
    4. Daniele Pacifico & James Browne & Rodrigo Fernandez & Herwig Immervoll & Dirk Neumann & Céline Thévenot, 2018. "Faces of joblessness in Italy: A people-centred perspective on employment barriers and policies," OECD Social, Employment and Migration Working Papers 208, OECD Publishing.
    5. Nivorozhkin, Anton & Promberger, Markus, 2020. "Employment Subsidies for Long-Term Welfare Benefits Recipients: Reconciling Programmes Goals with Needs of Diverging Population Groups," IAB-Discussion Paper 202027, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    6. Ioana Botea & Mitja Del Bono, 2022. "A Tale of Two Countries," World Bank Publications - Reports 37907, The World Bank Group.
    7. Ioana Alexandra Botea & Mitja Del Bono, 2022. "Cameroon Juvenocracy: Youth-shaped IGA," World Bank Publications - Reports 37042, The World Bank Group.
    8. Teo Matkovic & Dinka Caha, 2017. "Patterns of welfare-to-employment transitions of Croatian Guaranteed Minimum Benefit recipients: a preliminary study," Public Sector Economics, Institute of Public Finance, vol. 41(3), pages 335-358.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • H31 - Public Economics - - Fiscal Policies and Behavior of Economic Agents - - - Household
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure
    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply
    • J68 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Public Policy
    • J8 - Labor and Demographic Economics - - Labor Standards
    • J82 - Labor and Demographic Economics - - Labor Standards - - - Labor Force Composition

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:elsaab:192-en. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/eloecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.