IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/34851.html

Does Generative AI Narrow Education-Based Productivity Gaps? Evidence from a Randomized Experiment

Author

Listed:
  • Guillermo Cruces
  • Diego Fernández Meijide
  • Sebastian Galiani
  • Ramiro H. Gálvez
  • María Lombardi

Abstract

Does generative artificial intelligence (AI) reinforce or reduce productivity differences across workers? Existing evidence largely studies AI within firms and occupations, where organizational selection compresses educational heterogeneity, leaving unclear whether AI narrows productivity gaps across individuals with substantially different levels of formal education. We address this question using a randomized online experiment conducted outside firms, in which 1,174 adults ages 25–45 with heterogeneous educational backgrounds complete an incentivized, workplace-style business problem-solving task. The task is a general (not domain specific) exercise, and participants perform it either with or without access to a generative-AI assistant. Unlike prior work that studies heterogeneity within relatively homogeneous worker samples, our design targets the between–education-group productivity gap as the primary estimand. We find that AI increases productivity for all participants, with substantially larger gains for lower-education individuals. In the absence of AI access, higher-education participants outperform lower-education participants by 0.548 standard deviations; with AI access, this gap falls to 0.139 standard deviations, implying that generative AI closes about three quarters of the initial productivity gap. We interpret this pattern as evidence that generative AI narrows effective productivity differences in task execution by relaxing cognitive constraints that are more binding for lower-education individuals, even though underlying skill differences remain, as reflected in persistent education gaps in task performance and in a follow-up exercise without AI assistance.

Suggested Citation

  • Guillermo Cruces & Diego Fernández Meijide & Sebastian Galiani & Ramiro H. Gálvez & María Lombardi, 2026. "Does Generative AI Narrow Education-Based Productivity Gaps? Evidence from a Randomized Experiment," NBER Working Papers 34851, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:34851
    Note: DEV
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w34851.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    JEL classification:

    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:34851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.