IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/26011.html
   My bibliography  Save this paper

Identification of a Class of Health-Outcome Distributions under a Common Form of Partial Data Observability

Author

Listed:
  • John Mullahy

Abstract

This paper suggests analytical strategies for obtaining informative parameter bounds when multivariate health-outcome data are partially observed in a particular yet common manner. One familiar context is where M>1 health outcomes' respective totals across N>1 time periods are observed but where questions of interest involve features—probabilities, moments, etc.—of their unobserved joint distribution at each of the N time periods. For instance, one might wish to understand the distribution of any type of unhealthy day experienced over a month but have access only to the separate totals of physically unhealthy and mentally unhealthy days that are experienced. After demonstrating methods to bound, or partially identify, such distributions and related parameters under several sampling assumptions, the paper proceeds to derive bounds on partial effects involving exogenous covariates. These results are applied in three empirical exercises. Whether the proposed bounds prove to be sufficiently narrow to usefully inform decisionmakers can only be determined in context, although it is suggested in the paper's conclusion that the issues considered in this paper are likely to become increasingly important for analysts.

Suggested Citation

  • John Mullahy, 2019. "Identification of a Class of Health-Outcome Distributions under a Common Form of Partial Data Observability," NBER Working Papers 26011, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:26011
    Note: EH
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w26011.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marguerite Burns & John Mullahy, 2016. "Healthy-Time Measures of Health Outcomes and Healthcare Quality," NBER Working Papers 22562, National Bureau of Economic Research, Inc.
    2. John M. Abowd & Ian M. Schmutte, 2019. "An Economic Analysis of Privacy Protection and Statistical Accuracy as Social Choices," American Economic Review, American Economic Association, vol. 109(1), pages 171-202, January.
    3. Charles F. Manski, 1989. "Anatomy of the Selection Problem," Journal of Human Resources, University of Wisconsin Press, vol. 24(3), pages 343-360.
    4. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Mullahy, 2022. "Investigating health-related time use with partially observed data," Review of Economics of the Household, Springer, vol. 20(1), pages 103-121, March.
    2. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    3. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    4. Charles Bellemare & Luc Bissonnette & Sabine Kröger, 2010. "Bounding preference parameters under different assumptions about beliefs: a partial identification approach," Experimental Economics, Springer;Economic Science Association, vol. 13(3), pages 334-345, September.
    5. Ho, Kate & Rosen, Adam M., 2015. "Partial Identification in Applied Research: Benefits and Challenges," CEPR Discussion Papers 10883, C.E.P.R. Discussion Papers.
    6. Bo E. Honoré & Luojia Hu, 2020. "Selection Without Exclusion," Econometrica, Econometric Society, vol. 88(3), pages 1007-1029, May.
    7. Vira Semenova, 2023. "Aggregated Intersection Bounds and Aggregated Minimax Values," Papers 2303.00982, arXiv.org, revised Jun 2024.
    8. Ivan A. Canay & Azeem M. Shaikh, 2016. "Practical and theoretical advances in inference for partially identified models," CeMMAP working papers 05/16, Institute for Fiscal Studies.
    9. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    10. Magnac, Thierry, 2013. "Identification partielle : méthodes et conséquences pour les applications empiriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 233-258, Décembre.
    11. Arun Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2012. "Inference for best linear approximations to set identified functions," CeMMAP working papers 43/12, Institute for Fiscal Studies.
    12. Canay, Ivan A., 2010. "EL inference for partially identified models: Large deviations optimality and bootstrap validity," Journal of Econometrics, Elsevier, vol. 156(2), pages 408-425, June.
    13. Christian Bontemps & Thierry Magnac, 2017. "Set Identification, Moment Restrictions, and Inference," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 103-129, September.
    14. Charles F. Manski, 2003. "Identification Problems in the Social Sciences and Everyday Life," Southern Economic Journal, John Wiley & Sons, vol. 70(1), pages 11-21, July.
    15. Felix Chan & Laszlo Matyas & Agoston Reguly, 2024. "Modelling with Discretized Variables," Papers 2403.15220, arXiv.org.
    16. Arie Beresteanu, 2009. "Sharp Identification Regions in Models with Convex Predictions: Games, Individual Choice, and Incomplete Data," Working Paper 428, Department of Economics, University of Pittsburgh, revised Sep 2010.
    17. Kyungchul Song, 2009. "Point Decisions for Interval-Identified Parameters," PIER Working Paper Archive 09-036, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    18. Nicoletti, Cheti & Peracchi, Franco & Foliano, Francesca, 2007. "Estimating income poverty in the presence of measurement error and missing data problems," ISER Working Paper Series 2007-15, Institute for Social and Economic Research.
    19. Ariel Pakes & Jack Porter, 2024. "Moment inequalities for multinomial choice with fixed effects," Quantitative Economics, Econometric Society, vol. 15(1), pages 1-25, January.
    20. Thierry Magnac & Eric Maurin, 2008. "Partial Identification in Monotone Binary Models: Discrete Regressors and Interval Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(3), pages 835-864.

    More about this item

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • I1 - Health, Education, and Welfare - - Health

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:26011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.