IDEAS home Printed from https://ideas.repec.org/p/ise/remwps/wp03492024.html
   My bibliography  Save this paper

Hospital Admission Rates in São Paulo, Brazil - Lee-Carter model vs. neural networks

Author

Listed:
  • Rodolfo Monfilier Peres
  • Onofre Alves Simões

Abstract

In Brazil, hospital admissions account for nearly 50% of the total cost of health insurance claims, while representing only 1% of total medical procedures. Therefore, modeling hospital admissions is useful for insurers to evaluate costs in order to maintain their solvency. This article analyzes the use of the Lee-Carter model to predict hospital admissions in the state of São Paulo, Brazil, and contrasts it with the Long Short Term Memory (LSTM) neural network. The results showed that the two approaches have similar performance. This was not a disappointing result, on the contrary: from now on, future work can further test whether LSTM models are able to give a better result than Lee-Carter, for example by working with longer data sequences or by adapting the models.

Suggested Citation

  • Rodolfo Monfilier Peres & Onofre Alves Simões, 2024. "Hospital Admission Rates in São Paulo, Brazil - Lee-Carter model vs. neural networks," Working Papers REM 2024/0349, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  • Handle: RePEc:ise:remwps:wp03492024
    as

    Download full text from publisher

    File URL: https://rem.rc.iseg.ulisboa.pt/wps/pdf/REM_WP_0349_2024.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hainaut, Donatien, 2018. "A Neural-Network Analyzer For Mortality Forecast," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 481-508, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    2. G'abor Petneh'azi & J'ozsef G'all, 2019. "Mortality rate forecasting: can recurrent neural networks beat the Lee-Carter model?," Papers 1909.05501, arXiv.org, revised Oct 2019.
    3. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    4. Zhang, Jinggong, 2024. "Blended insurance scheme: A synergistic conventional-index insurance mixture," Insurance: Mathematics and Economics, Elsevier, vol. 119(C), pages 93-105.
    5. Miguel Santolino, 2023. "Should Selection of the Optimum Stochastic Mortality Model Be Based on the Original or the Logarithmic Scale of the Mortality Rate?," Risks, MDPI, vol. 11(10), pages 1-21, September.
    6. Andrea Nigri & José Manuel Aburto & Susanna Levantesi, 2022. "Leveraging deep neural networks to estimate age-specific mortality from life expectancy at birth," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(8), pages 199-232.
    7. Li, Li & Li, Han & Panagiotelis, Anastasios, 2025. "Boosting domain-specific models with shrinkage: An application in mortality forecasting," International Journal of Forecasting, Elsevier, vol. 41(1), pages 191-207.
    8. Susanna Levantesi & Virginia Pizzorusso, 2019. "Application of Machine Learning to Mortality Modeling and Forecasting," Risks, MDPI, vol. 7(1), pages 1-19, February.
    9. Jose Garrido & Yuxiang Shang & Ran Xu, 2024. "LSTM-Based Coherent Mortality Forecasting for Developing Countries," Risks, MDPI, vol. 12(2), pages 1-24, February.
    10. Diego Zappa & Gian Paolo Clemente & Francesco Della Corte & Nino Savelli, 2023. "Editorial on the Special Issue on Insurance: complexity, risks and its connection with social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 125-130, December.
    11. Jin, Zhuo & Yang, Hailiang & Yin, G., 2021. "A hybrid deep learning method for optimal insurance strategies: Algorithms and convergence analysis," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 262-275.
    12. Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.
    13. Hung-Tsung Hsiao & Chou-Wen Wang & I.-Chien Liu & Ko-Lun Kung, 2024. "Mortality improvement neural-network models with autoregressive effects," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 363-383, April.
    14. Corsaro, Stefania & Marino, Zelda & Scognamiglio, Salvatore, 2024. "Quantile mortality modelling of multiple populations via neural networks," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 114-133.
    15. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
    16. Joab Odhiambo & Patrick Weke & Philip Ngare, 2021. "A Deep Learning Integrated Cairns-Blake-Dowd (CBD) Sytematic Mortality Risk Model," JRFM, MDPI, vol. 14(6), pages 1-12, June.
    17. David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    18. Boumezoued, Alexandre & Elfassihi, Amal, 2021. "Mortality data correction in the absence of monthly fertility records," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 486-508.
    19. Alexandre Boumezoued & Amal Elfassihi, 2020. "Mortality data correction in the absence of monthly fertility records," Working Papers hal-02634631, HAL.

    More about this item

    Keywords

    Hospital Admissions; Lee-Carter; Neural Networks; LSTM; Brazil.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ise:remwps:wp03492024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sandra Araújo (email available below). General contact details of provider: https://rem.rc.iseg.ulisboa.pt/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.