IDEAS home Printed from
   My bibliography  Save this paper

Recursive `thick´ modeling of excess returns and portfolio allocation


  • Carlo A. Favero
  • Marco Aiolfi
  • Giorgio Primiceri


This paper explores the extent to which predictability of asset returns could be exploited for dynamic portfolio allocation among several (seven) assets taking model uncertainty explicitly into account.We consider model uncertainty when solving the problem of a representative fund manager who allocates funds between stock and bonds in three geographical areas: Europe, USA and Japan. We consider explicitly model uncertainty by implementing ´thick modelling´ to derive the average portfolio allocation generated by the recursively selected top fifty per cent of models in term of adjusted R-squared The portfolio allocation based on this strategy leads to systematic over-performance with respect to optimal portfolio allocation among several assets is based on the predictions of the best model as selected by the adjusted R-squared . Such over performance is mainly attributable to a reduction in the volatility of the returns on the selected portfolios. Thick modelling leads also to systematic replication, but not to over-performance, of a typical benchmark\ portfolio for our asset allocation problem.

Suggested Citation

  • Carlo A. Favero & Marco Aiolfi & Giorgio Primiceri, "undated". "Recursive `thick´ modeling of excess returns and portfolio allocation," Working Papers 197, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  • Handle: RePEc:igi:igierp:197

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 147-180.
    2. Anderson, Evan W. & McGrattan, Ellen R. & Hansen, Lars Peter & Sargent, Thomas J., 1996. "Mechanics of forming and estimating dynamic linear economies," Handbook of Computational Economics,in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 4, pages 171-252 Elsevier.
    3. Pesaran, M Hashem & Timmermann, Allan, 2000. "A Recursive Modelling Approach to Predicting UK Stock Returns," Economic Journal, Royal Economic Society, vol. 110(460), pages 159-191, January.
    4. Sack, Brian & Wieland, Volker, 2000. "Interest-rate smoothing and optimal monetary policy: a review of recent empirical evidence," Journal of Economics and Business, Elsevier, vol. 52(1-2), pages 205-228.
    5. Granger, Clive W. J. & Jeon, Yongil, 2004. "Thick modeling," Economic Modelling, Elsevier, vol. 21(2), pages 323-343, March.
    6. Soderstrom, Ulf, 2002. " Monetary Policy with Uncertain Parameters," Scandinavian Journal of Economics, Wiley Blackwell, vol. 104(1), pages 125-145.
    7. Rudebusch, Glenn D. & Svensson, Lars E. O., 2002. "Eurosystem monetary targeting: Lessons from U.S. data," European Economic Review, Elsevier, vol. 46(3), pages 417-442, March.
    8. J. Tetlow, Robert & von zur Muehlen, Peter, 2001. "Robust monetary policy with misspecified models: Does model uncertainty always call for attenuated policy?," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 911-949, June.
    9. Sack, Brian, 2000. "Does the fed act gradually? A VAR analysis," Journal of Monetary Economics, Elsevier, vol. 46(1), pages 229-256, August.
    10. Rudebusch, Glenn D., 2002. "Term structure evidence on interest rate smoothing and monetary policy inertia," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1161-1187, September.
    11. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    12. Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
    13. Onatski, Alexei & Stock, James H., 2002. "Robust Monetary Policy Under Model Uncertainty In A Small Model Of The U.S. Economy," Macroeconomic Dynamics, Cambridge University Press, vol. 6(01), pages 85-110, February.
    14. Söderström, Ulf, 1999. "Should central banks be more aggressive?," Working Paper Series 84, Sveriges Riksbank (Central Bank of Sweden).
    15. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo Group Munich.
    2. Marco Aiolfi & Carlo Ambrogio Favero, "undated". "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    3. Pesaran, M. Hashem & Schleicher, Christoph & Zaffaroni, Paolo, 2009. "Model averaging in risk management with an application to futures markets," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 280-305, March.
    4. Rosario Dell'Aquila & Elvezio Ronchetti, 2004. "Stock and Bond Return Predictability : The Discrimination Power of Model Selection Criteria," Research Papers by the Institute of Economics and Econometrics, Geneva School of Economics and Management, University of Geneva 2004.05, Institut d'Economie et Econométrie, Université de Genève.
    5. Dell'Aquila, Rosario & Ronchetti, Elvezio, 2006. "Stock and bond return predictability: the discrimination power of model selection criteria," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1478-1495, March.
    6. Vanina Forget, 2012. "Doing well and doing good: a multi-dimensional puzzle," Working Papers hal-00672037, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igi:igierp:197. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.