IDEAS home Printed from https://ideas.repec.org/p/hig/wpaper/136-ec-2016.html
   My bibliography  Save this paper

Estimation and filtering of nonlinear MS-DSGE models

Author

Listed:
  • Sergey Ivashchenko

    () (National Research University Higher School of Economics)

Abstract

This article suggests and compares the properties of some nonlinear Markov-switching filters. Two of them are sigma point filters: the Markov switching central difference Kalman filter (MSCDKF) and MSCDKFA. Two of them are Gaussian assumed filters: Markov switching quadratic Kalman filter (MSQKF) and MSQKFA. A small scale financial MS-DSGE model is used for tests. MSQKF greatly outperforms other filters in terms of computational costs. It also is the first or the second best according to most tests of filtering quality (including the quality of quasi-maximum likelihood estimation with use of a filter, RMSE and LPS of unobserved variables).

Suggested Citation

  • Sergey Ivashchenko, 2016. "Estimation and filtering of nonlinear MS-DSGE models," HSE Working papers WP BRP 136/EC/2016, National Research University Higher School of Economics.
  • Handle: RePEc:hig:wpaper:136/ec/2016
    as

    Download full text from publisher

    File URL: https://www.hse.ru/data/2016/05/19/1131872243/136EC2016.pdf
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benchimol, Jonathan & Ivashchenko, Sergey, 2020. "Switching Volatility in a Nonlinear Open Economy," Dynare Working Papers 60, CEPREMAP.
    2. Sergey Ivashchenko & Semih Emre Çekin & Kevin Kotzé & Rangan Gupta, 2020. "Forecasting with Second-Order Approximations and Markov-Switching DSGE Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 747-771, December.
    3. Benchimol, Jonathan & Ivashchenko, Sergey, 2021. "Switching volatility in a nonlinear open economy," Journal of International Money and Finance, Elsevier, vol. 110(C).

    More about this item

    Keywords

    regime switching; second-order approximation; non-linear MS-DSGE estimation; MSQKF; MSCDKF;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:wpaper:136/ec/2016. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamil Abdulaev) or (Shamil Abdulaev). General contact details of provider: http://edirc.repec.org/data/hsecoru.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.