IDEAS home Printed from https://ideas.repec.org/p/hhs/umnees/0477.html
   My bibliography  Save this paper

Estimation in integer - valued moving average models

Author

Listed:
  • Brännäs, Kurt

    (Department of Economics, Umeå University)

  • Hall, Andreia

    (Department of Mathematics, University of Aveiro)

Abstract

The paper presents new characterizations of the integer-valued moving average model. For four model variants we give moments and probability generating functions. Yule-Walker and conditional least squares estimators are obtained and studied by Monte Carlo simulation. A new generalized method of moment estimator based on probability generating functions is presented and shown to be consistent and asymptotically normal.The small sample performance is in some instances better than those of alternative estimators. The techniques are illustrated on a time series of traded stocks.

Suggested Citation

  • Brännäs, Kurt & Hall, Andreia, 1998. "Estimation in integer - valued moving average models," Umeå Economic Studies 477, Umeå University, Department of Economics.
  • Handle: RePEc:hhs:umnees:0477
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zezhun & Dassios, Angelos, 2022. "Cluster point processes and Poisson thinning INARMA," LSE Research Online Documents on Economics 113652, London School of Economics and Political Science, LSE Library.
    2. Brännäs, Kurt, 2002. "Conditional Heteroskedasticity in some Common Count Data Models for Financial Time Series Data," Umeå Economic Studies 592, Umeå University, Department of Economics.
    3. Kimberly F. Sellers & Ali Arab & Sean Melville & Fanyu Cui, 2021. "A flexible univariate moving average time-series model for dispersed count data," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-12, December.
    4. Schatz, Michael & Wheatley, Spencer & Sornette, Didier, 2022. "The ARMA Point Process and its Estimation," Econometrics and Statistics, Elsevier, vol. 24(C), pages 164-182.
    5. Brannas, Kurt & Hellstrom, Jorgen & Nordstrom, Jonas, 2002. "A new approach to modelling and forecasting monthly guest nights in hotels," International Journal of Forecasting, Elsevier, vol. 18(1), pages 19-30.
    6. Christian H. Weiß & Martin H.-J. M. Feld & Naushad Mamode Khan & Yuvraj Sunecher, 2019. "INARMA Modeling of Count Time Series," Stats, MDPI, vol. 2(2), pages 1-37, June.

    More about this item

    Keywords

    Model characterization; probability generating function; GMM; least squares; Yule-Walker; Monte Carlo; number of traded stocks;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:umnees:0477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Skog (email available below). General contact details of provider: https://edirc.repec.org/data/inumuse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.