Author
Abstract
imely assessment of regional economic activity in Ukraine is severely constrained by institutional and data-related limitations. Official regional gross regional product (GRP) statistics are available only at low frequency, are published with substantial delays, and, in the post-2022 period, are further affected by disruptions to statistical production caused by martial law. At the same time, a growing set of potentially informative regional indicators derived from administrative records and official short-term statistics is available at higher frequencies but only over short and heterogeneous time spans. These features make the direct application of standard regional nowcasting models infeasible. This paper develops a mixed-frequency factor-augmented vector autoregressive framework tailored to the Ukrainian data environment and designed to incorporate short and incomplete regional indicators into the nowcasting of regional GDP. The model explicitly exploits the hierarchical structure of Ukrainian regional statistics by combining information from quarterly and annual measures of economic activity and by linking regional dynamics to national output developments. Short regional indicators are summarised through latent regional factors extracted using missing-data factor estimation techniques that are robust to ragged edges at both the beginning and the end of the sample. The proposed framework is implemented using Ukrainian macro-regional aggregates constructed from official data published by the State Statistics Service of Ukraine. Particular attention is paid to the treatment of labour market indicators, housing price dynamics, and other short-term variables that exhibit discontinuities or limited availability. A pseudo-real-time nowcasting exercise shows that conditioning regional GDP nowcasts on factor information derived from short regional data improves predictive performance when contemporaneous national GDP estimates are not yet available. Once national aggregates are released, the marginal informational contribution of regional short-term indicators diminishes. Overall, the results demonstrate that mixed-frequency factor-augmented VAR models provide a coherent and empirically viable framework for regional GDP nowcasting in Ukraine. The approach is particularly well suited to data environments 1 characterised by short samples, publication delays, and institutional disruptions, and thus offers a valuable tool for real-time regional economic monitoring in periods of heightened uncertainty.
Suggested Citation
Drin, Svitlana & Zhuravlova, Anastasiia, 2026.
"Real-Time Nowcasting of Kyiv’s Regional GRP Using Google Trends and Mixed-Frequency Data,"
Working Papers
2026:1, Örebro University, School of Business.
Handle:
RePEc:hhs:oruesi:2026_001
Download full text from publisher
More about this item
Keywords
;
;
;
;
;
;
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:oruesi:2026_001. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ieoruse.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.