IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04222384.html

Axiomatic characterizations of the core without consistency

Author

Listed:
  • Sylvain Béal

    (CRESE - Centre de REcherches sur les Stratégies Economiques (UR 3190) - UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE], UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE])

  • Stéphane Gonzalez

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - UL2 - Université Lumière - Lyon 2 - UJM - Université Jean Monnet - Saint-Étienne - EM - EMLyon Business School - CNRS - Centre National de la Recherche Scientifique)

  • Philippe Solal

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - UL2 - Université Lumière - Lyon 2 - UJM - Université Jean Monnet - Saint-Étienne - EM - EMLyon Business School - CNRS - Centre National de la Recherche Scientifique)

  • Peter Sudhölter

Abstract

A TU game is totally positive if it is a linear combination of unanimity games with nonnegative coefficients. We show that the core on each cone of convex games that contains the set of totally positive games is characterized by the traditional properties Pareto efficiency, additivity (ADD), individual rationality, and the null-player property together with one new property, called unanimity requiring that the solution, when applied to a unanimity game on an arbitrary coalition, allows to distribute the entire available amount of money to each player of this coalition. We also show that the foregoing characterization can be generalized to the domain of balanced games by replacing ADD by "ADD on the set of totally positive games plus super-additivity (SUPA) in general". Adding converse SUPA allows to characterize the core on arbitrary domains of TU games that contain the set of all totally positive games. Converse SUPA requires a vector to be a member of the solution to a game whenever, when adding a totally positive game such that the sum becomes totally additive, the sum of the vector and each solution element of the totally positive game belongs to the solution of the aggregate game. Unlike in traditional characterizations of the core, our results do not use consistency properties.

Suggested Citation

  • Sylvain Béal & Stéphane Gonzalez & Philippe Solal & Peter Sudhölter, 2022. "Axiomatic characterizations of the core without consistency," Working Papers hal-04222384, HAL.
  • Handle: RePEc:hal:wpaper:hal-04222384
    Note: View the original document on HAL open archive server: https://hal.science/hal-04222384v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04222384v1/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Grabisch & Hervé Moulin & José Manuel Zarzuelo, 2024. "Professor Peter Sudhölter (1957–2024)," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(2), pages 289-294, June.
    2. Kaneko, Takuto & Nakada, Satoshi, 2025. "Nullified-game consistency and axiomatizations of the Core of TU-games with a fixed player set," Economics Letters, Elsevier, vol. 250(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04222384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.