IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00927441.html
   My bibliography  Save this paper

Are better vaccines really better? The case of a simple stochastic epidemic SIR model

Author

Listed:
  • Nicolas Houy

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

Abstract

We consider a model of vaccine market where the buyer is centralized and shows an endogenous demand function based on a simple stochastic SIR model. When the seller is a monopoly, we show that better vaccines (in the sense of greater efficiency or inducing less side-effects) do not imply greater total surplus, greater buyer surplus or even greater profits. Since we consider a centralized buyer, our results cannot be caused by the well-known epidemiological externality of vaccination.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Nicolas Houy, 2013. "Are better vaccines really better? The case of a simple stochastic epidemic SIR model," Post-Print halshs-00927441, HAL.
  • Handle: RePEc:hal:journl:halshs-00927441
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rikard Forslid & Mathias Herzing, 2015. "On the Optimal Production Capacity for Influenza Vaccine," Health Economics, John Wiley & Sons, Ltd., vol. 24(6), pages 726-741, June.
    2. Kessing, Sebastian G. & Nuscheler, Robert, 2006. "Monopoly pricing with negative network effects: The case of vaccines," European Economic Review, Elsevier, vol. 50(4), pages 1061-1069, May.
    3. Xu, Xiaopeng, 1999. "Technological improvements in vaccine efficacy and individual incentive to vaccinate," Economics Letters, Elsevier, vol. 65(3), pages 359-364, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabine Liebenehm & Bernard Bett & Cristobal Verdugo & Mohamed Said, 2016. "Optimal Drug Control under Risk of Drug Resistance – The Case of African Animal Trypanosomosis," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(2), pages 510-533, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David E. Bloom & Michael Kuhn & Klaus Prettner, 2022. "Modern Infectious Diseases: Macroeconomic Impacts and Policy Responses," Journal of Economic Literature, American Economic Association, vol. 60(1), pages 85-131, March.
    2. Proano, Ruben A. & Jacobson, Sheldon H. & Zhang, Wenbo, 2012. "Making combination vaccines more accessible to low-income countries: The antigen bundle pricing problem," Omega, Elsevier, vol. 40(1), pages 53-64, January.
    3. Kessing, Sebastian G. & Nuscheler, Robert, 2006. "Monopoly pricing with negative network effects: The case of vaccines," European Economic Review, Elsevier, vol. 50(4), pages 1061-1069, May.
    4. Michael Kremer, Christopher M. Snyder & Christopher M. Snyder, 2013. "When Is Prevention More Profitable than Cure? The Impact of Time-Varying Consumer Heterogeneity - Working Paper 334," Working Papers 334, Center for Global Development.
    5. Pekka S��skilahti, 2015. "Monopoly Pricing of Social Goods," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 22(3), pages 429-448, November.
    6. Michael Kremer & Christopher M. Snyder, 2013. "When Is Prevention More Profitable than Cure? The Impact of Time-Varying Consumer Heterogeneity," Working Paper 70726, Harvard University OpenScholar.
    7. Terrence August & Tunay I. Tunca, 2006. "Network Software Security and User Incentives," Management Science, INFORMS, vol. 52(11), pages 1703-1720, November.
    8. Matthias Klumpp & Dominic Loske & Silvio Bicciato, 2022. "COVID-19 health policy evaluation: integrating health and economic perspectives with a data envelopment analysis approach," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(8), pages 1263-1285, November.
    9. Isabel Helmrath & Matthias Hunold & Johannes Muthers, 2022. "Joint procurement by heterogeneous buyers," Economics working papers 2022-14, Department of Economics, Johannes Kepler University Linz, Austria.
    10. Alexander E. Saak & David A. Hennessy, 2018. "A model of reporting and controlling outbreaks by public health agencies," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(1), pages 21-64, July.
    11. Na Hao & Gervan Fearon, 2009. "Government Funding Policy Towards Communicable Diseases," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 37(2), pages 121-134, June.
    12. Rikard Forslid & Mathias Herzing, 2015. "On the Optimal Production Capacity for Influenza Vaccine," Health Economics, John Wiley & Sons, Ltd., vol. 24(6), pages 726-741, June.
    13. Stéphane Mechoulan, 2007. "Market structure and communicable diseases," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(2), pages 468-492, May.
    14. Michael Kremer & Christopher M. Snyder, 2015. "Preventives Versus Treatments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(3), pages 1167-1239.
    15. Sabine Liebenehm & Bernard Bett & Cristobal Verdugo & Mohamed Said, 2016. "Optimal Drug Control under Risk of Drug Resistance – The Case of African Animal Trypanosomosis," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(2), pages 510-533, June.
    16. Herrmann, Markus, 2010. "Monopoly pricing of an antibiotic subject to bacterial resistance," Journal of Health Economics, Elsevier, vol. 29(1), pages 137-150, January.
    17. Cozzi, Guido, 2022. "Shall we fear a Patent Waiver? Not for Covid-19 Vaccines," MPRA Paper 111990, University Library of Munich, Germany.
    18. Sorensen, Andrea Lockhart, 2015. "Asymmetry, uncertainty, and limits in a binary choice experiment with positive spillovers," Journal of Economic Behavior & Organization, Elsevier, vol. 116(C), pages 43-55.
    19. Skatun, John Douglas, 2003. "The overprovision of infectious disease medicine," Economics Letters, Elsevier, vol. 80(1), pages 61-66, July.
    20. Michael Kremer & Christopher Snyder, 2013. "When is Prevention More Profitable than Cure?," CID Working Papers 252, Center for International Development at Harvard University.

    More about this item

    Keywords

    Vaccines; Market structure; Monopoly; Epidemiology; SIR model;
    All these keywords.

    JEL classification:

    • I1 - Health, Education, and Welfare - - Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00927441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.