IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05117416.html

Everybody’s got to learn sometime? A causal machine learning evaluation of training programmes for jobseekers in France

Author

Listed:
  • Héloïse Burlat

    (BETA - Bureau d'Économie Théorique et Appliquée - AgroParisTech - UNISTRA - Université de Strasbourg - Université de Haute-Alsace (UHA) - Université de Haute-Alsace (UHA) Mulhouse - Colmar - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UGent - Universiteit Gent = Ghent University = Université de Gand)

Abstract

This paper estimates the heterogeneous impact of three types of vocational training- preparation, qualifying, and combined – on jobseekers' return to employment using the Modified Causal Forest method. Analysing data from 33,699 individuals over 24 months, it reveals a short-term negative lock-in effect for all programmes, persisting in the medium term for combined training. Only qualifying training shows a positive medium-term effect. Seniors, low-skilled, foreign-born, and those with poor job histories benefit most, while youth and higher education levels benefit less. Targeting foreign-born individuals could significantly enhance programme effectiveness, as indicated by the clustering analysis and optimal policy trees.

Suggested Citation

  • Héloïse Burlat, 2024. "Everybody’s got to learn sometime? A causal machine learning evaluation of training programmes for jobseekers in France," Post-Print hal-05117416, HAL.
  • Handle: RePEc:hal:journl:hal-05117416
    DOI: 10.1016/j.labeco.2024.102573
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Pietro Giorgio, 2025. "Labour market effects of training programmes in the EU. Findings and policy lessons from a meta-analysis," JRC Research Reports JRC142871, Joint Research Centre.
    2. Federica Mascolo & Nora Bearth & Fabian Muny & Michael Lechner & Jana Mareckova, 2024. "From Average Effects to Targeted Assignment: A Causal Machine Learning Analysis of Swiss Active Labor Market Policies," Papers 2410.23322, arXiv.org, revised May 2025.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • J68 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Public Policy
    • J08 - Labor and Demographic Economics - - General - - - Labor Economics Policies
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05117416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.