IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02956380.html

On the predictability of crude oil market: A hybrid multiscale wavelet approach

Author

Listed:
  • Stelios Bekiros

    (EUI - European University Institute - Institut Universitaire Européen)

  • Jose Arreola Hernandez

    (Rennes SB - Rennes School of Business)

  • Gazi Salah Uddin

    (LIU - Linköping University)

  • Ahmed Taneem Muzaffar

    (International Labour Organization)

Abstract

Past research indicates that forecasting is important in understanding price dynamics across assets. We explore the potentiality of multiscale forecasting in the crude oil market by employing a wavelet multiscale analysis on returns and volatilities of Brent and West Texas Intermediate crude oil indices between January 1, 2001, and May 1, 2015. The analysis is based on a shift-invariant discrete wavelet transform, augmented by an entropy-based methodology for determining the optimal timescale decomposition under different market regimes. The empirical results show that the five-step-ahead wavelet forecast that is based on volatilities outperforms the random walk forecast, relative to the wavelet forecast that is based on returns. Optimal wavelet causality forecasting for returns is suggested across all frequencies (i.e., daily–yearly), whereas for volatilities it is suggested only up to quarterly frequencies. These results may have important implications for market efficiency and predictability of prices on the crude oil markets.

Suggested Citation

  • Stelios Bekiros & Jose Arreola Hernandez & Gazi Salah Uddin & Ahmed Taneem Muzaffar, 2020. "On the predictability of crude oil market: A hybrid multiscale wavelet approach," Post-Print hal-02956380, HAL.
  • Handle: RePEc:hal:journl:hal-02956380
    DOI: 10.1002/for.2635
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Shaobo & Guo, Jiaqi, 2022. "Infectious disease equity market volatility, geopolitical risk, speculation, and commodity returns: Comparative analysis of five epidemic outbreaks," Research in International Business and Finance, Elsevier, vol. 62(C).
    2. Mustanen, Dmitri & Maaitah, Ahmad & Mishra, Tapas & Parhi, Mamata, 2022. "The power of investors’ optimism and pessimism in oil market forecasting," Energy Economics, Elsevier, vol. 114(C).
    3. Zhang, Junting & Liu, Haifei & Bai, Wei & Li, Xiaojing, 2024. "A hybrid approach of wavelet transform, ARIMA and LSTM model for the share price index futures forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    4. Li, Chuchu & Lin, Qin & Huang, Dong & Grifoll, Manel & Yang, Dong & Feng, Hongxiang, 2023. "Is entropy an indicator of port traffic predictability? The evidence from Chinese ports," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    5. Christos Floros & Georgios Galyfianakis, 2020. "Bubbles in Crude Oil and Commodity Energy Index: New Evidence," Energies, MDPI, vol. 13(24), pages 1-11, December.
    6. Jiaying Peng & Zhenghui Li & Benjamin M. Drakeford, 2020. "Dynamic Characteristics of Crude Oil Price Fluctuation—From the Perspective of Crude Oil Price Influence Mechanism," Energies, MDPI, vol. 13(17), pages 1-19, August.
    7. Lu, Botao & Ma, Feng & Wang, Jiqian & Ding, Hui & Wahab, M.I.M., 2021. "Harnessing the decomposed realized measures for volatility forecasting: Evidence from the US stock market," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 672-689.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02956380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.