IDEAS home Printed from
   My bibliography  Save this paper

Predicting Corporate Failure in the UK: A Multidimensional Scaling Approach


  • Neophytou, E.
  • Molinero, C.M.


Scaling techniques are proposed as an alternative tool for the analysis and prediction of corporate failure. This approach has the advantage of reproducing the main features of the data in the form of statistical maps that lend themselves to intuitive interpretation. The maps are further analysed by means of standard multivariate statistical tool.

Suggested Citation

  • Neophytou, E. & Molinero, C.M., 2001. "Predicting Corporate Failure in the UK: A Multidimensional Scaling Approach," Papers 01-172, University of Southampton - Department of Accounting and Management Science.
  • Handle: RePEc:fth:sotoam:01-172

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Balcaen S. & Ooghe H., 2004. "Alternative methodologies in studies on business failure: do they produce better results than the classic statistical methods?," Vlerick Leuven Gent Management School Working Paper Series 2004-16, Vlerick Leuven Gent Management School.

    More about this item



    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:sotoam:01-172. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.