IDEAS home Printed from https://ideas.repec.org/p/fth/nodapa/223.html
   My bibliography  Save this paper

On the Likelihood of Condorcet's Profiles

Author

Listed:
  • Merlin, V.
  • Tataru, M.
  • Valognes, F.

Abstract

Consider a group of individuals who have to collectively choose an outcome from a finite set of feasible alternatives. A scoring or positional rule is an aggregation procedure where each voter awards a given number of points, Wj, to the alternative she ranks in Jth position in her preference ordering; the outcome chosen is then the alternative that receives the highest number of points. A Condorcet or majority winner is a candidate who obtains more votes than her opponents in any pairwise comparison.

Suggested Citation

  • Merlin, V. & Tataru, M. & Valognes, F., 2000. "On the Likelihood of Condorcet's Profiles," Papers 223, Notre-Dame de la Paix, Sciences Economiques et Sociales.
  • Handle: RePEc:fth:nodapa:223
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Kamwa & Vincent Merlin, 2019. "The Likelihood of the Consistency of Collective Rankings Under Preferences Aggregation with Four Alternatives Using Scoring Rules: A General Formula and the Optimal Decision Rule," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1377-1395, April.
    2. Mostapha Diss & Vincent Merlin, 2010. "On the stability of a triplet of scoring rules," Theory and Decision, Springer, vol. 69(2), pages 289-316, August.
    3. Eyal Baharad & Shmuel Nitzan, 2011. "Condorcet vs. Borda in light of a dual majoritarian approach," Theory and Decision, Springer, vol. 71(2), pages 151-162, August.
    4. Aaron Meyers & Michael Orrison & Jennifer Townsend & Sarah Wolff & Angela Wu, 2014. "Generalized Condorcet winners," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 43(1), pages 11-27, June.
    5. Aleksandras KRYLOVAS & Natalja KOSAREVA & Edmundas Kazimieras ZAVADSKAS, 2016. "Statistical Analysis of KEMIRA Type Weights Balancing Methods," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 19-39, September.
    6. Merlin, Vincent & Valognes, Fabrice, 2004. "The impact of indifferent voters on the likelihood of some voting paradoxes," Mathematical Social Sciences, Elsevier, vol. 48(3), pages 343-361, November.
    7. William v. Gehrlein & Dominique Lepelley, 2009. "A note on Condorcet's other paradox," Economics Bulletin, AccessEcon, vol. 29(3), pages 2000-2007.
    8. Eric Kamwa & Vincent Merlin, 2018. "The Likelihood of the Consistency of Collective Rankings under Preferences Aggregation with Four Alternatives using Scoring Rules: A General Formula and the Optimal Decision Rule," Working Papers hal-01757742, HAL.
    9. William V Gehrlein & Vincent Merlin, 2021. "On the Probability of the Ostrogorski Paradox," Post-Print halshs-03504780, HAL.

    More about this item

    Keywords

    GAME THEORY ; ECONOMIC MODELS ; DECISION MAKING;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:nodapa:223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/fsfunbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.