IDEAS home Printed from https://ideas.repec.org/p/fth/hertbu/20007.html
   My bibliography  Save this paper

A Comparison of Modelling Strategies for Value-Added Analyses of Educational Data

Author

Listed:
  • Spencer, N.
  • Fielding, A.

Abstract

Modelling strategies for value-added multilevel models are examined. These types of models typically include an endogenous variable and this causes difficulties for the standard estimation techniques that are commonly used to analyse multilevel models. Two alternative estimation strategies are proposed: one using an instrumental variable approach and the other using a Bayesian analysis through the BUGS software. We conclud that the approach offered by the BUGS software has advantages over more classical estimation methods.

Suggested Citation

  • Spencer, N. & Fielding, A., 2000. "A Comparison of Modelling Strategies for Value-Added Analyses of Educational Data," Papers 2000:7, University of Hertfordshire - Business Schoool.
  • Handle: RePEc:fth:hertbu:2000:7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Ebbes & Ulf Böckenholt & Michel Wedel, 2004. "Regressor and random-effects dependencies in multilevel models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(2), pages 161-178.
    2. Jorge Manzi & Ernesto San Martín & Sébastien Van Bellegem, 2014. "School System Evaluation by Value Added Analysis Under Endogeneity," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 130-153, January.
    3. Neil Spencer, 2002. "Combining Modelling Strategies to Analyse Teaching Styles Data," Quality & Quantity: International Journal of Methodology, Springer, vol. 36(2), pages 113-127, May.

    More about this item

    Keywords

    ECONOMIC MODELS ; ESTIMATOR;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:hertbu:2000:7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: http://edirc.repec.org/data/echeruk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.