IDEAS home Printed from
   My bibliography  Save this paper

Range-based Volatility Estimation and Forecasting


  • Daniel Bencik

    (Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague, Smetanovo nábreží 6, 111 01 Prague 1, Czech Republic)


In this paper, we analyze new possibilities in predicting daily ranges, i.e. differences between daily high and low prices. We empirically assess efficiency gains in volatility estimation when using range-based estimators as opposed to simple daily ranges and explore the use of these more efficient volatility measures as predictors of daily ranges. The array of models used in this paper include the heterogeneous autoregressive model, conditional autoregressive ranges model and a vector error-correction model of daily highs and lows. Contrary to intuition, models based on co-integration of daily highs and lows fail to produce good quality out of sample forecasts of daily ranges. The best one-day-ahead daily ranges forecasts are produced by a realized range based HAR model with a GARCH volatility-of-volatility component.

Suggested Citation

  • Daniel Bencik, 2014. "Range-based Volatility Estimation and Forecasting," Working Papers IES 2014/34, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Dec 2014.
  • Handle: RePEc:fau:wpaper:wp2014_34

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    volatility; returns; futures contracts; cointegration; prediction;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:wpaper:wp2014_34. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lenka Herrmannova). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.