IDEAS home Printed from
   My bibliography  Save this paper

Coordination of Purchasing and Bidding Activities Across Markets


  • Daniel D. Zeng
  • James C. Cox
  • Moshe Dror


In both consumer purchasing and industrial procurement, combinatorial interdependencies among the items to be purchased are commonplace. E-commerce compounds the problem by providing more opportunities for switching suppliers at low costs, but also potentially eases the problem by enabling automated market decision-making systems, commonly referred to as trading agents, to make purchasing decisions in an integrated manner across markets. Most of the existing research related to trading agents assumes that there exists a combinatorial market mechanism in which buyers (or sellers) can bid (or sell) service or merchant bundles. Todayâ??s prevailing e-commerce practice, however, does not support this assumption in general and thus limits the practical applicability of these approaches. We are investigating a new approach to deal with the combinatorial interdependency challenges for online markets. This approach relies on existing commercial online market institutions such as posted-price markets and various online auctions that sell single items. It uses trading agents to coordinate a buyerâ??s purchasing and bidding activities across multiple online markets simultaneously to achieve the best overall procurement effectiveness. This paper presents two sets of models related to this approach. The first set of models formalizes optimal purchasing decisions across posted-price markets with fixed transaction costs. Flat shipping costs, a common e-tailing practice, are captured in these models. We observe that making optimal purchasing decisions in this context is NP-hard in the strong sense and suggest several efficient computational methods based on discrete location theory. The second set of models is concerned with the coordination of bidding activities across multiple online auctions. We study the underlying coordination problem for a collection of first or second-price sealed-bid auctions and derive the optimal coordination and bidding policies.

Suggested Citation

  • Daniel D. Zeng & James C. Cox & Moshe Dror, 2007. "Coordination of Purchasing and Bidding Activities Across Markets," Experimental Economics Center Working Paper Series 2006-04, Experimental Economics Center, Andrew Young School of Policy Studies, Georgia State University.
  • Handle: RePEc:exc:wpaper:2006-04

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:exc:wpaper:2006-04. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (J. Todd Swarthout). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.