IDEAS home Printed from https://ideas.repec.org/p/ete/licosp/537166.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Decomposing response error in food consumption measurement: implications for survey design from a survey experiment in Tanzania

Author

Listed:
  • Jed Friedman
  • Kathleen Beegle
  • Joachim De Weerdt
  • John Gibson

Abstract

There is wide variation in how consumption is measured in household surveys both across countries and over time. This variation may confound welfare comparisons in part because these alternative survey designs produce consumption estimates that are differentially influenced by contrasting types of survey response error. Although previous studies have documented the extent of net error in alternative survey designs, little is known about the relative influence of the different response errors that underpin a survey estimate. This study leverages a recent randomized food consumption survey experiment in Tanzania to shed light on the relative influence of these various error types. The observed deviation of measured household consumption from a benchmark is decomposed into item-specific consumption incidence and consumption value so as to investigate effects related to (a) the omission of any consumption and then (b) the error in value reporting conditional on positive consumption. The results show that various survey designs exhibit widely differing error decompositions, and hence a simple summary comparison of the total recorded consumption across surveys will obscure specific error patterns and inhibit the lessons for improved consumption survey design. In light of these findings, the relative performance of common survey designs is discussed, and design lessons are drawn to enhance the accuracy of item-specific consumption reporting and, consequently, the measures of total household food consumption.

Suggested Citation

  • Jed Friedman & Kathleen Beegle & Joachim De Weerdt & John Gibson, 2016. "Decomposing response error in food consumption measurement: implications for survey design from a survey experiment in Tanzania," Working Papers of LICOS - Centre for Institutions and Economic Performance 537166, KU Leuven, Faculty of Economics and Business (FEB), LICOS - Centre for Institutions and Economic Performance.
  • Handle: RePEc:ete:licosp:537166
    as

    Download full text from publisher

    File URL: https://lirias.kuleuven.be/retrieve/386370
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Beegle, Kathleen & De Weerdt, Joachim & Friedman, Jed & Gibson, John, 2012. "Methods of household consumption measurement through surveys: Experimental results from Tanzania," Journal of Development Economics, Elsevier, vol. 98(1), pages 3-18.
    2. John Gibson & Kathleen Beegle & Joachim De Weerdt & Jed Friedman, 2015. "What does Variation in Survey Design Reveal about the Nature of Measurement Errors in Household Consumption?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(3), pages 466-474, June.
    3. de Nicola, Francesca & Giné, Xavier, 2014. "How accurate are recall data? Evidence from coastal India," Journal of Development Economics, Elsevier, vol. 106(C), pages 52-65.
    4. Andrew Halpern-Manners & John Warren, 2012. "Panel Conditioning in Longitudinal Studies: Evidence From Labor Force Items in the Current Population Survey," Demography, Springer;Population Association of America (PAA), vol. 49(4), pages 1499-1519, November.
    5. Kathleen Beegle & Luc Christiaensen & Andrew Dabalen & Isis Gaddis, 2016. "Poverty in a Rising Africa," World Bank Publications - Books, The World Bank Group, number 22575, December.
    6. Margaret Grosh & Paul Glewwe, 2000. "Designing Household Survey Questionnaires for Developing Countries," World Bank Publications - Books, The World Bank Group, number 25338, December.
    7. Bouis, Howarth & Haddad, Lawrence & Kennedy, Eileen, 1992. "Does it matter how we survey demand for food?: Evidence from Kenya and the Philippines," Food Policy, Elsevier, vol. 17(5), pages 349-360, October.
    8. Blair, Edward & Burton, Scot, 1987. "Cognitive Processes Used by Survey Respondents to Answer Behavioral Frequency Questions," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(2), pages 280-288, September.
    9. De Weerdt, Joachim & Beegle, Kathleen & Friedman,, Jed & Gibson, John, 2014. "The challenge of measuring hunger," Policy Research Working Paper Series 6736, The World Bank.
    10. John Gibson & Bonggeun Kim, 2007. "Measurement Error in Recall Surveys and the Relationship between Household Size and Food Demand," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 473-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kate Ambler & Alan de Brauw & Susan Godlonton, 0. "Cash Transfers and Management Advice for Agriculture: Evidence from Senegal," The World Bank Economic Review, World Bank, vol. 34(3), pages 597-617.
    2. Fiedler, John L. & Mwangi, Dena M., 2016. "Improving household consumption and expenditure surveys’ food consumption metrics: Developing a strategic approach to the unfinished agenda:," IFPRI discussion papers 1570, International Food Policy Research Institute (IFPRI).
    3. Shivaraj Thapa & Subina Shrestha & Ram Kumar Adhikari & Suman Bhattarai & Deepa Paudel & Deepak Gautam & Anil Koirala, 2022. "Residents’ willingness-to-pay for watershed conservation program facilitating ecosystem services in Begnas watershed, Nepal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7811-7832, June.
    4. Nancy A. Connelly & T. Bruce Lauber & Jeff Niederdeppe & Barbara A. Knuth, 2018. "Using a Web‐Based Diary Method to Estimate Risks and Benefits from Fish Consumption," Risk Analysis, John Wiley & Sons, vol. 38(6), pages 1116-1127, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friedman, Jed & Beegle, Kathleen & De Weerdt, Joachim & Gibson, John, 2017. "Decomposing response error in food consumption measurement: Implications for survey design from a randomized survey experiment in Tanzania," Food Policy, Elsevier, vol. 72(C), pages 94-111.
    2. repec:lic:licosd:37516 is not listed on IDEAS
    3. Fiedler, John L. & Mwangi, Dena M., 2016. "Improving household consumption and expenditure surveys’ food consumption metrics: Developing a strategic approach to the unfinished agenda:," IFPRI discussion papers 1570, International Food Policy Research Institute (IFPRI).
    4. repec:lic:licosd:41819 is not listed on IDEAS
    5. Ameye, Hannah & De Weerdt, Joachim & Gibson, John, 2021. "Measuring macro- and micronutrient consumption in multi-purpose surveys: Evidence from a survey experiment in Tanzania," Food Policy, Elsevier, vol. 102(C).
    6. Conforti, Piero & Grünberger, Klaus & Troubat, Nathalie, 2017. "The impact of survey characteristics on the measurement of food consumption," Food Policy, Elsevier, vol. 72(C), pages 43-52.
    7. Chaoran Chen & Diego Restuccia & Raül Santaeulàlia-Llopis, 2023. "Land Misallocation and Productivity," American Economic Journal: Macroeconomics, American Economic Association, vol. 15(2), pages 441-465, April.
    8. Pape,Utz Johann & Wollburg,Philip Randolph, 2019. "Estimation of Poverty in Somalia Using Innovative Methodologies," Policy Research Working Paper Series 8735, The World Bank.
    9. Abate, Gashaw T. & de Brauw, Alan & Hirvonen, Kalle & Wolle, Abdulazize, 2023. "Measuring consumption over the phone: Evidence from a survey experiment in urban Ethiopia," Journal of Development Economics, Elsevier, vol. 161(C).
    10. De Magalhães, Leandro & Santaeulàlia-Llopis, Raül, 2018. "The consumption, income, and wealth of the poorest: An empirical analysis of economic inequality in rural and urban Sub-Saharan Africa for macroeconomists," Journal of Development Economics, Elsevier, vol. 134(C), pages 350-371.
    11. Ragui Assaad & Caroline Krafft & Shaimaa Yassin, 2018. "Comparing retrospective and panel data collection methods to assess labor market dynamics," IZA Journal of Migration and Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 8(1), pages 1-34, December.
    12. Arthi, Vellore & Beegle, Kathleen & De Weerdt, Joachim & Palacios-López, Amparo, 2018. "Not your average job: Measuring farm labor in Tanzania," Journal of Development Economics, Elsevier, vol. 130(C), pages 160-172.
    13. Abay, Kibrom A. & Berhane, Guush & Hoddinott, John F. & Tafere, Kibrom, 2021. "Assessing response fatigue in phone surveys: Experimental evidence on dietary diversity in Ethiopia," IFPRI discussion papers 2017, International Food Policy Research Institute (IFPRI).
    14. Raül Santaeulàlia-Llopis & Yu Zheng, 2017. "Why Is Food Consumption Inequality Underestimated? A Story of Vices and Children," Working Papers 969, Barcelona School of Economics.
    15. repec:ucp:ecdecc:doi:10.1086/686669 is not listed on IDEAS
    16. Santaeulàlia-Llopis, Raül ; Zheng, Yu, 2016. "Missing Consumption Inequality: Direct Evidence from Individual Food Data," Economics Working Papers ECO2016/12, European University Institute.
    17. repec:lic:licosd:42120 is not listed on IDEAS
    18. Leandro De Magalhães & Dongya Koh & Raül Santaeulàlia-Llopis, 2016. "Consumption and Expenditure in Sub-Saharan Africa," Bristol Economics Discussion Papers 16/677, School of Economics, University of Bristol, UK, revised 07 Oct 2016.
    19. Leandro DE MAGALHÃES & Dongya KOH & Räul SANTAEULILA-LLOPIS, 2019. "The Cost of Consumption Smoothing: Less Schooling and less Nutrition," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 85(3), pages 181-208, September.
    20. Dang,Hai-Anh H. & Kilic,Talip & Carletto,Calogero & Abanokova,Kseniya, 2021. "Poverty Imputation in Contexts without Consumption Data : A Revisit with Further Refinements," Policy Research Working Paper Series 9838, The World Bank.
    21. Almås, Ingvild & Somville, Vincent, 2020. "The effect of gender-targeted transfers: Experimental Evidence from India," CEPR Discussion Papers 15218, C.E.P.R. Discussion Papers.
    22. Dang, Hai-Anh & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," IZA Discussion Papers 14997, Institute of Labor Economics (IZA).
    23. Smith, Lisa C., 2015. "The great Indian calorie debate: Explaining rising undernourishment during India’s rapid economic growth," Food Policy, Elsevier, vol. 50(C), pages 53-67.
    24. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.

    More about this item

    Keywords

    Food consumption; Household surveys; Response error; Recall; Telescoping;
    All these keywords.

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ete:licosp:537166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: library EBIB (email available below). General contact details of provider: https://feb.kuleuven.be/LICOS .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.