IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/115368.html
   My bibliography  Save this paper

Robust correspondence analysis

Author

Listed:
  • Riani, Marco
  • Atkinson, Anthony C.
  • Torti, Francesca
  • Corbellini, Aldo

Abstract

Correspondence analysis is a method for the visual display of information from two-way contingency tables. We introduce a robust form of correspondence analysis based on minimum covariance determinant estimation. This leads to the systematic deletion of outlying rows of the table and to plots of greatly increased informativeness. Our examples are trade flows of clothes and consumer evaluations of the perceived properties of cars. The robust method requires that a specified proportion of the data be used in fitting. To accommodate this requirement we provide an algorithm that uses a subset of complete rows and one row partially, both sets of rows being chosen robustly. We prove the convergence of this algorithm.

Suggested Citation

  • Riani, Marco & Atkinson, Anthony C. & Torti, Francesca & Corbellini, Aldo, 2022. "Robust correspondence analysis," LSE Research Online Documents on Economics 115368, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:115368
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/115368/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrea Cerioli & Marco Riani & Anthony C. Atkinson & Aldo Corbellini, 2018. "Rejoinder to the discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 661-666, December.
    2. James M. Boyett, 1979. "Random R×C Tables with Given Row and Column Totals," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(3), pages 329-332, November.
    3. Andrea Cerioli & Marco Riani & Anthony C. Atkinson & Aldo Corbellini, 2018. "The power of monitoring: how to make the most of a contaminated multivariate sample," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 559-587, December.
    4. W. M. Patefield, 1981. "An Efficient Method of Generating Random R × C Tables with Given Row and Column Totals," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 30(1), pages 91-97, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    2. Kang-Ping Lu & Shao-Tung Chang, 2021. "Robust Algorithms for Change-Point Regressions Using the t -Distribution," Mathematics, MDPI, vol. 9(19), pages 1-28, September.
    3. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    4. Tobias Fissler & Johanna F. Ziegel, 2019. "Evaluating Range Value at Risk Forecasts," Papers 1902.04489, arXiv.org, revised Nov 2020.
    5. David Kahle & Ruriko Yoshida & Luis Garcia-Puente, 2018. "Hybrid schemes for exact conditional inference in discrete exponential families," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 983-1011, October.
    6. Greco, Luca & Pacillo, Simona & Maresca, Piera, 2023. "An impartial trimming algorithm for robust circle fitting," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    7. Andrea Cappozzo & Luis Angel García Escudero & Francesca Greselin & Agustín Mayo-Iscar, 2021. "Parameter Choice, Stability and Validity for Robust Cluster Weighted Modeling," Stats, MDPI, vol. 4(3), pages 1-14, July.
    8. Cappozzo, Andrea & Greselin, Francesca & Murphy, Thomas Brendan, 2021. "Robust variable selection for model-based learning in presence of adulteration," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    9. Borkowf, Craig B., 2004. "An efficient algorithm for generating two-way contingency tables with fixed marginal totals and arbitrary mean proportions, with applications to permutation tests," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 431-449, January.
    10. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    11. Kim, Donguk & Agresti, Alan, 1997. "Nearly exact tests of conditional independence and marginal homogeneity for sparse contingency tables," Computational Statistics & Data Analysis, Elsevier, vol. 24(1), pages 89-104, March.
    12. Alessio Farcomeni & Antonio Punzo, 2020. "Robust model-based clustering with mild and gross outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 989-1007, December.
    13. Ricardo A. Maronna & Víctor J. Yohai, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 603-604, December.
    14. Enrique Garcia Tejeda, 2022. "La concentracion espacial de los reportes de disparos al 911 en la Ciudad de Mexico: ¿Comportamiento racional en el uso de armas durante la pandemia Covid-19?," Sobre México. Revista de Economía, Sobre México. Temas en economía, vol. 3(5), pages 69-93.
    15. L. A. García-Escudero & A. Gordaliza & C. Matrán & A. Mayo-Iscar, 2018. "Comments on “The power of monitoring: how to make the most of a contaminated multivariate sample”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 605-608, December.
    16. repec:jss:jstsof:06:i04 is not listed on IDEAS
    17. Domenico Perrotta & Francesca Torti, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 641-649, December.
    18. Jan Kalina & Jan Tichavský, 2022. "The minimum weighted covariance determinant estimator for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 977-999, December.
    19. Li, Jiang-Cheng & Leng, Na & Zhong, Guang-Yan & Wei, Yu & Peng, Jia-Sheng, 2020. "Safe marginal time of crude oil price via escape problem of econophysics," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    20. Hojsgaard, Soren & Thiesson, Bo, 1995. "BIFROST -- Block recursive models induced from relevant knowledge, observations, and statistical techniques," Computational Statistics & Data Analysis, Elsevier, vol. 19(2), pages 155-175, February.
    21. Chen, Jie & Glaz, Joseph, 2002. "Approximations for a conditional two-dimensional scan statistic," Statistics & Probability Letters, Elsevier, vol. 58(3), pages 287-296, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:115368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.