IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2020-51.html
   My bibliography  Save this paper

Sectoral employment dynamics in Australia

Author

Listed:
  • Heather Anderson
  • Giovanni Caggiano
  • Farshid Vahid
  • Benjamin Wong

Abstract

In the aftermath of the covid-19 pandemic, the prevention of further decline in aggregate employment and turning it around are high on the agenda of policymakers. To this end, it is imperative to have a disaggregated model of employment, given the unequal effects of covid-19 on employment in different sectors of the economy. In this paper we develop a multivariate time series model of employment in 19 sectors of the Australian economy. We provide the predictions of this model conditional on various scenarios that are based on the most recent quantitative information about sectoral employment in Australia. We estimate that the drop in total employment in the second quarter of 2020 will be in between 7 and 13 percentage points, compared to the second quarter of 2019. We also use this model to determine the long-run effect of a 1% increase in economic activity in any chosen sector on aggregate employment. Our findings point to manufacturing and construction sectors as those that might generate the largest positive spillovers for the rest of the economy. Moreover, we provide an interactive web-based app as well as an interactive spreadsheet that produce our model’s 5-year forecasts based on any user-specified scenario for the current and following three quarters. As the covid-19 pandemic evolves and some restrictions are safely lifted or other restrictions become necessary, the sectoral employment multipliers together with the interactive tools produced here will provide useful information for policymakers.

Suggested Citation

  • Heather Anderson & Giovanni Caggiano & Farshid Vahid & Benjamin Wong, 2020. "Sectoral employment dynamics in Australia," CAMA Working Papers 2020-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2020-51
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2020-05/51_2020_anderson_caggiano_vahid_wong.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John & Koop, Gary & van Dijk, Herman (ed.), 2011. "The Oxford Handbook of Bayesian Econometrics," OUP Catalogue, Oxford University Press, number 9780199559084.
    2. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    3. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Stephen J. Terry, 2020. "COVID-Induced Economic Uncertainty," NBER Working Papers 26983, National Bureau of Economic Research, Inc.
    4. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    5. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    6. Victoria Gregory & Guido Menzio & David Wiczer, 2020. "Pandemic Recession: L- or V-Shaped?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 40(01), pages 1-31, May.
    7. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    8. Jean-Noël Barrot & Basile Grassi & Julien Sauvagnat, 2021. "Sectoral Effects of Social Distancing," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 277-281, May.
    9. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    10. Warwick McKibbin & Roshen Fernando, 2021. "The Global Macroeconomic Impacts of COVID-19: Seven Scenarios," Asian Economic Papers, MIT Press, vol. 20(2), pages 1-30, Summer.
    11. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    12. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, vol. 84(Q1), pages 4-18.
    13. Caggiano, Giovanni & Castelnuovo, Efrem & Kima, Richard, 2020. "The global effects of Covid-19-induced uncertainty," Economics Letters, Elsevier, vol. 194(C).
    14. Sylvain Leduc & Zheng Liu, 2020. "The Uncertainty Channel of the Coronavirus," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, vol. 2020(07), pages 1-05, March.
    15. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    16. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    17. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
    18. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, September.
    19. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    20. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2020. "COVID-19 and The Macroeconomic Effects of Costly Disasters," NBER Working Papers 26987, National Bureau of Economic Research, Inc.
    21. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ssebulime, Kurayish & Okumu, Ibrahim Mike & Bbaale, Edward, 2023. "The Changing Employment Landscape in Uganda," African Journal of Economic Review, African Journal of Economic Review, vol. 11(4), September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heather Anderson & Giovanni Caggiano & Farshid Vahid & Benjamin Wong, 2020. "Sectoral Employment Dynamics in Australia and the COVID‐19 Pandemic," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 53(3), pages 402-414, September.
    2. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2021. "No‐arbitrage priors, drifting volatilities, and the term structure of interest rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 495-516, August.
    3. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    4. Berg Tim Oliver, 2017. "Forecast accuracy of a BVAR under alternative specifications of the zero lower bound," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(2), pages 1-29, April.
    5. Tomasz Wozniak, 2016. "Rare Events and Risk Perception: Evidence from Fukushima Accident," Department of Economics - Working Papers Series 2021, The University of Melbourne.
    6. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    7. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    8. Bloor, Chris & Matheson, Troy, 2011. "Real-time conditional forecasts with Bayesian VARs: An application to New Zealand," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 26-42, January.
    9. James Morley & Benjamin Wong, 2020. "Estimating and accounting for the output gap with large Bayesian vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 1-18, January.
    10. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    11. Tim Oliver Berg, 2016. "Multivariate Forecasting with BVARs and DSGE Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(8), pages 718-740, December.
    12. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland.
    13. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    14. Higgins, Patrick & Zha, Tao & Zhong, Wenna, 2016. "Forecasting China's economic growth and inflation," China Economic Review, Elsevier, vol. 41(C), pages 46-61.
    15. Hanck, Christoph & Prüser, Jan, 2016. "House prices and interest rates: Bayesian evidence from Germany," Ruhr Economic Papers 620, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    16. Reif Magnus, 2021. "Macroeconomic uncertainty and forecasting macroeconomic aggregates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
    17. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    18. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Large Vector Autoregressions with Asymmetric Priors," Working Papers 759, Queen Mary University of London, School of Economics and Finance.
    19. Pestova, Anna & Mamonov, Mikhail, 2019. "Should we care? : The economic effects of financial sanctions on the Russian economy," BOFIT Discussion Papers 13/2019, Bank of Finland, Institute for Economies in Transition.
    20. Kenneth Beauchemin & Saeed Zaman, 2011. "A medium scale forecasting model for monetary policy," Working Papers (Old Series) 1128, Federal Reserve Bank of Cleveland.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2020-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.