IDEAS home Printed from https://ideas.repec.org/p/eei/rpaper/eeri_rp_2004_04.html
   My bibliography  Save this paper

Bayesian measures of explained variance and pooling in multilevel (hierarchical) models

Author

Listed:
  • Andrew Gelman
  • Iain Pardoe

Abstract

Explained variance (R^2) is a familiar summary of the fit of a linear regression and has been generalized in various ways to multilevel (hierarchical) models. The multilevel models we consider in this paper are characterized by hierarchical data structures in which individuals are grouped into units (which themselves might be further grouped into larger units), and there are variables measured on individuals and each grouping unit. The models are based on regression relationships at different levels, with the first level corresponding to the individual data, and subsequent levels corresponding to between-group regressions of individual predictor effects on grouping unit variables. We present an approach to defining R^2 at each level of the multilevel model, rather than attempting to create a single summary measure of fit. Our method is based on comparing variances in a single fitted model rather than comparing to a null model. In simple regression, our measure generalizes the classical adjusted R^2. We also discuss a related variance comparison to summarize the degree to which estimates at each level of the model are pooled together based on the level-specific regression relationship, rather than estimated separately. This pooling factor is related to the concept of shrinkage in simple hierarchical models. We illustrate the methods on a dataset of radon in houses within counties using a series of models ranging from a simple linear regression model to a multilevel varying-intercept, varying-slope model.

Suggested Citation

  • Andrew Gelman & Iain Pardoe, 2004. "Bayesian measures of explained variance and pooling in multilevel (hierarchical) models," EERI Research Paper Series EERI_RP_2004_04, Economics and Econometrics Research Institute (EERI), Brussels.
  • Handle: RePEc:eei:rpaper:eeri_rp_2004_04
    as

    Download full text from publisher

    File URL: http://www.eeri.eu/documents/wp/EERI_RP_2004_04.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. S. Hodges, 1998. "Some algebra and geometry for hierarchical models, applied to diagnostics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 497-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioana Ramia & Malina Voicu, 2022. "Life Satisfaction and Happiness Among Older Europeans: The Role of Active Ageing," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 160(2), pages 667-687, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengcheng Hao & Dietrich Rosen & Tatjana Rosen, 2014. "Local Influence Analysis in AB–BA Crossover Designs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1153-1166, December.
    2. Shi, Lei & Chen, Gemai, 2012. "Deletion, replacement and mean-shift for diagnostics in linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 202-208, January.
    3. Matos, Larissa A. & Bandyopadhyay, Dipankar & Castro, Luis M. & Lachos, Victor H., 2015. "Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 104-117.
    4. Shi, Lei & Lu, Jun & Zhao, Jianhua & Chen, Gemai, 2016. "Case deletion diagnostics for GMM estimation," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 176-191.
    5. C. Fernandez & M. F. J. Steel, 1999. "Some comments on model development and posterior existence," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 89-96.
    6. Liying Luo & James S. Hodges, 2016. "Block Constraints in Age–Period–Cohort Models with Unequal-width Intervals," Sociological Methods & Research, , vol. 45(4), pages 700-726, November.
    7. E. Andres Houseman & Louise Ryan & Brent Coull, 2004. "Cholesky Residuals for Assessing Normal Errors in a Linear Model with Correlated Outcomes: Technical Report," Harvard University Biostatistics Working Paper Series 1019, Berkeley Electronic Press.
    8. B. Arendacká & S. Puntanen, 2015. "Further remarks on the connection between fixed linear model and mixed linear model," Statistical Papers, Springer, vol. 56(4), pages 1235-1247, November.
    9. Shi, Lei & Ojeda, Mario Miguel, 2004. "Local influence in multilevel regression for growth curves," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 282-304, November.
    10. repec:jss:jstsof:25:i10 is not listed on IDEAS
    11. He, Yi & Hodges, James S., 2008. "Point estimates for variance-structure parameters in Bayesian analysis of hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2560-2577, January.
    12. James Bennett & Jon Wakefield, 2001. "Errors-in-Variables in Joint Population Pharmacokinetic/Pharmacodynamic Modeling," Biometrics, The International Biometric Society, vol. 57(3), pages 803-812, September.
    13. Duarte Nubia E. & Giolo Suely R. & Pereira Alexandre C. & de Andrade Mariza & Soler Júlia P., 2014. "Using the theory of added-variable plot for linear mixed models to decompose genetic effects in family data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 359-378, June.
    14. Dipak Dey & Alan Gelfand & Tim Swartz & Pantelis Vlachos, 1998. "A simulation-intensive approach for checking hierarchical models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(2), pages 325-346, December.
    15. Lisa Henn & James S. Hodges, 2014. "Multiple Local Maxima in Restricted Likelihoods and Posterior Distributions for Mixed Linear Models," International Statistical Review, International Statistical Institute, vol. 82(1), pages 90-105, April.
    16. Ahmed Bani-Mustafa & K. M. Matawie & C. F. Finch & Amjad Al-Nasser & Enrico Ciavolino, 2019. "Recursive residuals for linear mixed models," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(3), pages 1263-1274, May.
    17. Andrew Gelman & Iven Van Mechelen & Geert Verbeke & Daniel F. Heitjan & Michel Meulders, 2005. "Multiple Imputation for Model Checking: Completed-Data Plots with Missing and Latent Data," Biometrics, The International Biometric Society, vol. 61(1), pages 74-85, March.
    18. Shi, Lei & Chen, Gemai, 2008. "Case deletion diagnostics in multilevel models," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1860-1877, October.
    19. Wei, Wen Hsiang & Fung, Wing Kam, 1999. "The mean-shift outlier model in general weighted regression and its applications," Computational Statistics & Data Analysis, Elsevier, vol. 30(4), pages 429-441, June.
    20. Antonietta Mira & Daniel J. Sargent, 2003. "A new strategy for speeding Markov chain Monte Carlo algorithms," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 49-60, February.
    21. Ying Yuan & Valen E. Johnson, 2012. "Goodness-of-Fit Diagnostics for Bayesian Hierarchical Models," Biometrics, The International Biometric Society, vol. 68(1), pages 156-164, March.

    More about this item

    Keywords

    Adjusted R-squared Bayesian inference hierarchical model multilevel regression partial pooling shrinkage;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eei:rpaper:eeri_rp_2004_04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Julia van Hove (email available below). General contact details of provider: https://edirc.repec.org/data/eeriibe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.