IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/3986.html

Semiparametric Estimation of Treatment Effects in Randomized Experiments

Author

Listed:
  • Athey, Susan

    (Stanford University)

  • Bickel, Peter J.

    (University of California, Berkeley)

  • Chen, Aiyou

    (Google LLC)

  • Imbens, Guido W.

    (Stanford University)

  • Pollmann, Michael

    (Stanford University)

Abstract

We develop new semiparametric methods for estimating treatment effects. We focus on a setting where the outcome distributions may be thick tailed, where treatment effects are small, where sample sizes are large and where assignment is completely random. This setting is of particular interest in recent experimentation in tech companies. We propose using parametric models for the treatment effects, as opposed to parametric models for the full outcome distributions. This leads to semiparametric models for the outcome distributions. We derive the semiparametric efficiency bound for this setting, and propose efficient estimators. In the case with a constant treatment effect one of the proposed estimators has an interesting interpretation as a weighted average of quantile treatment effects, with the weights proportional to (minus) the second derivative of the log of the density of the potential outcomes. Our analysis also results in an extension of Huber’s model and trimmed mean to include asymmetry and a simplified condition on linear combinations of order statistics, which may be of independent interest.

Suggested Citation

  • Athey, Susan & Bickel, Peter J. & Chen, Aiyou & Imbens, Guido W. & Pollmann, Michael, 2021. "Semiparametric Estimation of Treatment Effects in Randomized Experiments," Research Papers 3986, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:3986
    as

    Download full text from publisher

    File URL: https://www.gsb.stanford.edu/faculty-research/working-papers/semiparametric-estimation-treatment-effects-randomized-experiments
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athey, Susan & Keleher, Niall & Spiess, Jann, 2025. "Machine learning who to nudge: Causal vs predictive targeting in a field experiment on student financial aid renewal," Journal of Econometrics, Elsevier, vol. 249(PC).
    2. Baul, Tushi & Karlan, Dean & Toyama, Kentaro & Vasilaky, Kathryn, 2024. "Improving smallholder agriculture via video-based group extension," Journal of Development Economics, Elsevier, vol. 169(C).
    3. Joe Cooprider & Shima Nassiri, 2023. "Science of price experimentation at Amazon," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 58(1), pages 34-41, January.
    4. Ke Sun & Linglong Kong & Hongtu Zhu & Chengchun Shi, 2024. "ARMA-Design: Optimal Treatment Allocation Strategies for A/B Testing in Partially Observable Time Series Experiments," Papers 2408.05342, arXiv.org, revised Jan 2025.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:3986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.