IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/17066.html

Information Design in Concave Games

Author

Listed:
  • Smolin, Alex
  • Yamashita, Takuro

Abstract

We study information design in games with a continuum of actions such that the players' payoffs are concave in their own actions. A designer chooses an information structure--a joint distribution of a state and a private signal of each player. The information structure induces a Bayesian game and is evaluated according to the expected designer's payoff under the equilibrium play. We develop a method that facilitates the search for an optimal information structure, i.e., one that cannot be outperformed by any other information structure, however complex. We show an information structure is optimal whenever it induces the strategies that can be implemented by an incentive contract in a dual, principal-agent problem which aggregates marginal payoffs of the players in the original game. We use this result to establish the optimality of Gaussian information structures in settings with quadratic payoffs and a multivariate normally distributed state. We analyze the details of optimal structures in a differentiated Bertrand competition and in a prediction game.

Suggested Citation

  • Smolin, Alex & Yamashita, Takuro, 2022. "Information Design in Concave Games," CEPR Discussion Papers 17066, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:17066
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP17066
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Itai Arieli & Yakov Babichenko & Fedor Sandomirskiy, 2023. "Feasible Conditional Belief Distributions," Papers 2307.07672, arXiv.org, revised Nov 2024.
    3. Junjie Chen & Takuro Yamashita, 2025. "The Design of Monopoly Information Broker," Papers 2503.19539, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • D42 - Microeconomics - - Market Structure, Pricing, and Design - - - Monopoly
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:17066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.