IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2468.html
   My bibliography  Save this paper

Fractal dimensions of the built-up footprint: buildings versus roads. Fractal evidence from Antwerp (Belgium)

Author

Listed:
  • THOMAS, Isabelle
  • FRANKHAUSER, Pierre

Abstract

In this paper we explore further the use of fractal dimensions by comparing values for built-up spaces and values for road networks, both being estimated by the same method. This is done in an attempt to explain the differences theoretically and empirically, and to show how far both indices are complementary and useful in urban planning. Empirical analyses are performed at the scale of the townships within the urban region of Antwerp (Belgium). Fractal dimensions, curves of scaling behavior, and concordance analyses are computed and their usefulness explained. We conclude that both dimensions translate subtly different realities and that they should be used with caution in morphological analyses: the fractal dimension for built-up spaces indicates how uniformly buildings fill space when zooming to ever finer scales, while the fractal dimension for networks indicates the extent to which street segments are distributed more or less uniformly in the study area. The two are not the same, as roads can serve spaces that are not built up.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • THOMAS, Isabelle & FRANKHAUSER, Pierre, 2013. "Fractal dimensions of the built-up footprint: buildings versus roads. Fractal evidence from Antwerp (Belgium)," LIDAM Reprints CORE 2468, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2468
    DOI: 10.1068/b38218
    Note: In : Environment and Planning B: Planning and Design, 40(2), 310-329, 2013
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1068/b38218
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b38218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:cai:popine:popu_p1998_10n1_0240 is not listed on IDEAS
    2. Isabelle Thomas & Pierre Frankhauser & Benoit Frenay & Michel Verleysen, 2010. "Clustering Patterns of Urban Built-up Areas with Curves of Fractal Scaling Behaviour," Environment and Planning B, , vol. 37(5), pages 942-954, October.
    3. Isabelle Thomas & Pierre Frankhauser & Marie‐Laurence De Keersmaecker, 2007. "Fractal dimension versus density of built‐up surfaces in the periphery of Brussels," Papers in Regional Science, Wiley Blackwell, vol. 86(2), pages 287-308, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. António Dinis F. Santos & Duarte Valério & J. A. Tenreiro Machado & António M. Lopes, 2019. "A fractional perspective to the modelling of Lisbon’s public transportation network," Transportation, Springer, vol. 46(5), pages 1893-1913, October.
    2. Pavón-Domínguez, P. & Rincón-Casado, A. & Ruiz, P. & Camacho-Magriñán, P., 2018. "Multifractal approach for comparing road transport network geometry: The case of Spain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 678-690.
    3. Claudia Yamu & Gert de Roo & Pierre Frankhauser, 2016. "Assuming it is all about conditions. Framing a simulation model for complex, adaptive urban space," Environment and Planning B, , vol. 43(6), pages 1019-1039, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yanguang, 2013. "Fractal analytical approach of urban form based on spatial correlation function," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 47-60.
    2. Chen, Yanguang, 2012. "Fractal dimension evolution and spatial replacement dynamics of urban growth," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 115-124.
    3. Chen, Yanguang, 2013. "A set of formulae on fractal dimension relations and its application to urban form," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 150-158.
    4. Zhijun SONG & Linjun YU, 2019. "Multifractal features of spatial variation in construction land in Beijing (1985–2015)," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-15, December.
    5. Isabelle Thomas & Pierre Frankhauser & Benoit Frenay & Michel Verleysen, 2010. "Clustering Patterns of Urban Built-up Areas with Curves of Fractal Scaling Behaviour," Environment and Planning B, , vol. 37(5), pages 942-954, October.
    6. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.
    7. Janka Lengyel & Seraphim Alvanides & Jan Friedrich, 2023. "Modelling the interdependence of spatial scales in urban systems," Environment and Planning B, , vol. 50(1), pages 182-197, January.
    8. Yanguang Chen & Jiejing Wang, 2013. "Multifractal Characterization of Urban Form and Growth: The Case of Beijing," Environment and Planning B, , vol. 40(5), pages 884-904, October.
    9. Blaudin de Thé, Camille & Carantino, Benjamin & Lafourcade, Miren, 2021. "The carbon ‘carprint’ of urbanization: New evidence from French cities," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    10. Lafourcade, Miren & Blaudin de Thé, Camille & Carantino, Benjamin, 2018. "The Carbon `Carprint' of Suburbanization: New Evidence from French Cities," CEPR Discussion Papers 13086, C.E.P.R. Discussion Papers.
    11. Jean Cavailhès & Pierre Frankhauser & Dominique Peeters & Isabelle Thomas, 2010. "Residential equilibrium in a multifractal metropolitan area," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 45(3), pages 681-704, December.
    12. Song, Zhijun & Jin, Wenxuan & Jiang, Guanghui & Li, Sichun & Ma, Wenqiu, 2021. "Typical and atypical multifractal systems of urban spaces—using construction land in Zhengzhou from 1988 to 2015 as an example," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. Myagmartseren Purevtseren & Bazarkhand Tsegmid & Myagmarjav Indra & Munkhnaran Sugar, 2018. "The Fractal Geometry of Urban Land Use: The Case of Ulaanbaatar City, Mongolia," Land, MDPI, vol. 7(2), pages 1-14, May.
    14. Pavel Em, 2014. "The Concept of Fuzzy Central Place as the Approach to Analyze Distribution of Central Functions within Urban Agglomerations," ERSA conference papers ersa14p212, European Regional Science Association.
    15. Dekolo, Samuel & Oduwaye, Leke & Nwokoro, Immaculata, 2016. "Urban Sprawl and Loss of Agricultural Land in Peri-urban Areas of Lagos," MPRA Paper 73726, University Library of Munich, Germany.
    16. Saeedimoghaddam, Mahmoud & Stepinski, T.F. & Dmowska, Anna, 2020. "Rényi’s spectra of urban form for different modalities of input data," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Claudia Yamu & Gert de Roo & Pierre Frankhauser, 2016. "Assuming it is all about conditions. Framing a simulation model for complex, adaptive urban space," Environment and Planning B, , vol. 43(6), pages 1019-1039, November.
    18. Isabelle Thomas & Pierre Frankhauser & Dominique Badariotti, 2012. "Comparing the fractality of European urban neighbourhoods: do national contexts matter?," Journal of Geographical Systems, Springer, vol. 14(2), pages 189-208, April.
    19. Chen, Yanguang & Feng, Jian, 2012. "Fractal-based exponential distribution of urban density and self-affine fractal forms of cities," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1404-1416.
    20. Francisco Martínez & Bastian Sepúlveda & Hermann Manríquez, 2023. "Fractal Organization of Chilean Cities: Observations from a Developing Country," Land, MDPI, vol. 12(2), pages 1-21, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.