IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Improving the Forecasting of Dynamic Conditional Correlation: a Volatility Dependent Approach

  • E. Otranto


Forecasting volatility in a multivariate framework has received many contributions in the recent literature, but problems in estimation are still frequently encountered when dealing with a large set of time series. The Dynamic Conditional Correlation (DCC) modeling is probably the most used approach; it has the advantage of separating the estimation of the volatility of each time series (with great flexibility, using single univariate models) and the correlation part (with the strong constraint imposing the same dynamics to all the correlations). We propose a modification to the DCC model, providing different dynamics for each correlation, simply hypothesizing a dependence on the volatility structure of each time series. This new model implies adding only two parameters with respect to the original DCC model. Its performance is evaluated in terms of out-of-sample forecasts with respect to the DCC models and other multivariate GARCH models. The results on four data sets seem to favor the new model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

Paper provided by Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia in its series Working Paper CRENoS with number 200917.

in new window

Date of creation: 2009
Date of revision:
Handle: RePEc:cns:cnscwp:200917
Contact details of provider: Postal: Via S. Giorgio 12, I-09124 Cagliari
Phone: +70/6756406
Fax: +70/6756402
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cns:cnscwp:200917. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Antonello Pau)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.