IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Gibrat’s law for cities: uniformly most powerful unbiased test of the Pareto against the lognormal

Listed author(s):

    (Université de Lyon – Université de Saint-Etienne, EMLYON Business School and ETH Zurich)


    (International Institute of Earthquake Prediction Theory and Mathematical Geophysics Russian Academy of Science)


    (ETH Zurich and Swiss Finance Institute)

We provide definitive results to close the debate between Eeckhout (2004, 2009) and Levy (2009) on the validity of Zipf’s law, which is the special Pareto law with tail exponent 1, to describe the tail of the distribution of U.S. city sizes. Because the origin of the disagreement between Eeckhout and Levy stems from the limited power of their tests, we perform the uniformly most powerful unbiased test for the null hypothesis of the Pareto distribution against the lognormal. The p-value and Hill’s estimator as a function of city size lower threshold confirm indubitably that the size distribution of the 1000 largest cities or so, which includemore than half of the total U.S. population, is Pareto, but we rule out that the tail exponent, estimated to be 1.4 ± 0.1, is equal to 1. For larger ranks, the p-value becomes very small and Hill’s estimator decays systematically with decreasing ranks, qualifying the lognormal distribution as the better model for the set of smaller cities. These two results reconcile the opposite views of Eeckhout (2004) and Levy (2009). We explain how Gibrat’s law of proportional growth underpins both the Pareto and lognormal distributions and stress the key ingredient at the origin of their difference in standard stochastic growth models of cities (Gabaix 1999, Eeckhout 2004).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

Paper provided by Swiss Finance Institute in its series Swiss Finance Institute Research Paper Series with number 09-40.

in new window

Length: 12 pages
Date of creation:
Handle: RePEc:chf:rpseri:rp0940
Contact details of provider: Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp0940. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marilyn Barja)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.