sentiment analysis, text mining, large language models, natural language processing, ChatGPT, Japanese stock market, TOPIX 500, Nikkei 225, investment, alpha creation, risk-adjusted returns
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Souta Nakatani & Kiyohiko G. Nishimura & Taiga Saito & Akihiko Takahashi, 2020. "Interest Rate Model with Investor Attitude and Text Mining," CIRJE F-Series CIRJE-F-1152, CIRJE, Faculty of Economics, University of Tokyo.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-430, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-441, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
- Huck, Nicolas, 2010. "Pairs trading and outranking: The multi-step-ahead forecasting case," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1702-1716, December.
- Masafumi Nakano & Akihiko Takahashi, 2020. "A new investment method with AutoEncoder: Applications to crypto currencies(Forthcoming in "Expert Systems with Applications")," CARF F-Series CARF-F-489, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Souta Nakatani & Kiyohiko G. Nishimura & Taiga Saito & Akihiko Takahashi, 2020. "Interest Rate Model with Investor Attitude and Text Mining (Published in IEEE Access)," CARF F-Series CARF-F-479, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhenwei Lin & Masafumi Nakano & Akihiko Takahashi, 2025. "Investment with New Sentiment Analysis in Japanese Stock Market: Expert Knowledge Can Still Outperform ChatGPT," CIRJE F-Series CIRJE-F-1248, CIRJE, Faculty of Economics, University of Tokyo.
- Masafumi Nakano & Akihiko Takahashi, 2019. "A New Investment Method with AutoEncoder: Applications to Cryptocurrencies," CIRJE F-Series CIRJE-F-1128, CIRJE, Faculty of Economics, University of Tokyo.
- Daiya Mita & Akihiko Takahashi, 2022. "Multi-Agent Model Based Proactive Risk Management For Equity Investment," CIRJE F-Series CIRJE-F-1207, CIRJE, Faculty of Economics, University of Tokyo.
- Akihiko Takahashi & Soichiro Takahashi, 2022. "A state space modeling for proactive management in equity investment "Forthcoming in International Journal of Financial Engineering"," CARF F-Series CARF-F-543, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Akihiko Takahashi & Soichiro Takahashi, 2022. "A State Space Modeling for Proactive Management in Equity Investment," CIRJE F-Series CIRJE-F-1197, CIRJE, Faculty of Economics, University of Tokyo.
- Taiga Saito & Shivam Gupta, 2022. "Big Data Applications with Theoretical Models and Social Media in Financial Management," CIRJE F-Series CIRJE-F-1205, CIRJE, Faculty of Economics, University of Tokyo.
- Taiga Saito & Shivam Gupta, 2022. "Big data applications with theoretical models and social media in financial management," CARF F-Series CARF-F-550, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Vasu Kalariya & Pushpendra Parmar & Patel Jay & Sudeep Tanwar & Maria Simona Raboaca & Fayez Alqahtani & Amr Tolba & Bogdan-Constantin Neagu, 2022. "Stochastic Neural Networks-Based Algorithmic Trading for the Cryptocurrency Market," Mathematics, MDPI, vol. 10(9), pages 1-15, April.
- Taiga Saito & Akihiko Takahashi, 2021. "Portfolio Optimization with Choice of a Probability Measure," CIRJE F-Series CIRJE-F-1165, CIRJE, Faculty of Economics, University of Tokyo.
- Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023.
"Explainable artificial intelligence modeling to forecast bitcoin prices,"
International Review of Financial Analysis, Elsevier, vol. 88(C).
- John W Goodell & Sami Ben Jabeur & Foued Saadaoui & Muhammad Ali Nasir, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," Post-Print hal-05148944, HAL.
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Nidhal Mgadmi & Tarek Sadraoui & Ameni Abidi, 2024. "Causality between stock indices and cryptocurrencies before and during the Russo–Ukrainian war," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 71(2), pages 301-323, June.
- Nagula, Pavan Kumar & Alexakis, Christos, 2022. "A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
- Jlassi, Nabila Boukef & Jeribi, Ahmed & Lahiani, Amine & Mefteh-Wali, Salma, 2023. "Subsample analysis of stock market – cryptocurrency returns tail dependence: A copula approach for the tails," Finance Research Letters, Elsevier, vol. 58(PA).
- Keisuke Kizaki & Taiga Saito & Akihiko Takahashi, 2024. "Multi-agent Equilibrium Model with Heterogeneous Views on Fundamental Risks in Incomplete Market," CIRJE F-Series CIRJE-F-1224, CIRJE, Faculty of Economics, University of Tokyo.
- Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
- R. K. Jana & Indranil Ghosh & Debojyoti Das, 2021. "A differential evolution-based regression framework for forecasting Bitcoin price," Annals of Operations Research, Springer, vol. 306(1), pages 295-320, November.
- Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019.
"Computational approaches and data analytics in financial services: A literature review,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02879937, HAL.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02880149, HAL.
- Suhwan Ji & Jongmin Kim & Hyeonseung Im, 2019. "A Comparative Study of Bitcoin Price Prediction Using Deep Learning," Mathematics, MDPI, vol. 7(10), pages 1-20, September.
- Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2025-05-05 (Computational Economics)
- NEP-FMK-2025-05-05 (Financial Markets)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf601. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.