IDEAS home Printed from
   My bibliography  Save this paper

Testing the concavity of an ordinaldominance curve


  • Beare, Brendan K.
  • Moon, Jong-Myun


We study the asymptotic properties of a class of statistics used for testing the null hypothesis that an ordinal dominance curve is concave. The statistics are based on the Lp-distance between the empirical ordinal dominance curve and its least concave majo- rant, with 1 ≤ p ≤ ∞. We formally establish the limit distribution of the statistics when the true ordinal dominance curve is concave. Further, we establish that, when 1 ≤ p ≤ 2, the limit distribution is stochastically largest when the true ordinal dominance curve is the 45-degree line. When p > 2, this is not the case, and in fact the limit distribution diverges to infinity along a suitably chosen sequence of concave ordinal dominance curves. Our results serve to clarify, extend and amend assertions appearing previously in the literature for the cases p = 1 and p = ∞.

Suggested Citation

  • Beare, Brendan K. & Moon, Jong-Myun, 2012. "Testing the concavity of an ordinaldominance curve," University of California at San Diego, Economics Working Paper Series qt6qg1f8ms, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt6qg1f8ms

    Download full text from publisher

    File URL:;origin=repeccitec
    Download Restriction: no

    References listed on IDEAS

    1. Beare, Brendan K., 2011. "Measure preserving derivatives and the pricing kernel puzzle," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 689-697.
    2. Christopher A. Carolan & Joshua M. Tebbs, 2005. "Nonparametric tests for and against likelihood ratio ordering in the two-sample problem," Biometrika, Biometrika Trust, vol. 92(1), pages 159-171, March.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Social and Behavioral Sciences; null hypothesis;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt6qg1f8ms. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.