IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Extreme values and “robust” analysis of distributions

Listed author(s):
  • Philippe Van Kerm


    (CEPS/INSTEAD, G.-D. Luxembourg)

Distributive analysis typically consists in estimating summary measures capturing aspects of the distribution of sample points beyond central tendency. Stochastic dominance analysis is also central for comparisons of distributions. Unfortunately, data contamination, and extreme data more generally, are known to be highly influential in both types of analyses—much more so, than for central tendency analysis—and potentially jeopardize the validity of one’s conclusions even with relatively large sample sizes. This presentation illustrates the problems raised by extreme data in distributive analysis and describes robust parametric and semi-parametric approaches for addressing it. The methods are based on the use of “optimal B-robust” (OBRE) estimators, as an alternative to maximum likelihood. A prototype of Stata implementation of these estimators is described and empirical examples in income distribution analysis show how robust inequality estimates and dominance checks can be derived from these parametric or semiparametric models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: presentation slides
Download Restriction: no

Paper provided by Stata Users Group in its series United Kingdom Stata Users' Group Meetings 2007 with number 17.

in new window

Date of creation: 14 Sep 2007
Handle: RePEc:boc:usug07:17
Contact details of provider: Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:boc:usug07:17. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.