IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/343.html

A general existence theorem of zero points

Author

Listed:
  • Herings, P. Jean-Jacques

    (Center for Mathematical Economics, Bielefeld University)

  • Koshevoy, Gleb A.

    (Center for Mathematical Economics, Bielefeld University)

  • Talman, Dolf

    (Center for Mathematical Economics, Bielefeld University)

  • Yang, Zaifu

    (Center for Mathematical Economics, Bielefeld University)

Abstract

Abstract Let X be a nonempty, compact, convex set in $$\mathbb{R}^n$$ and let φ be an upper semicontinuous mapping from X to the collection of nonempty, compact, convex subsets of $$\mathbb{R}^n$$ . It is well known that such a mapping has a stationary point on X; i.e., there exists a point X such that its image under φ has a nonempty intersection with the normal cone of X at the point. In the case where, for every point in X, it holds that the intersection of the image under φ with the normal cone of X at the point is either empty or contains the origin 0 n , then φ must have a zero point on X; i.e., there exists a point in X such that 0 n lies in the image of the point. Another well-known condition for the existence of a zero point follows from the Ky Fan coincidence theorem, which says that, if for every point the intersection of the image with the tangent cone of X at the point is nonempty, the mapping must have a zero point. In this paper, we extend all these existence results by giving a general zero-point existence theorem, of which the previous two results are obtained as special cases. We discuss also what kind of solutions may exist when no further conditions are stated on the mapping φ. Finally, we show how our results can be used to establish several new intersection results on a compact, convex set.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Herings, P. Jean-Jacques & Koshevoy, Gleb A. & Talman, Dolf & Yang, Zaifu, 2017. "A general existence theorem of zero points," Center for Mathematical Economics Working Papers 343, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:343
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2909868/2910148
    File Function: First Version, 2002
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Dolf Talman & Zaifu Yang, 2012. "On a Parameterized System of Nonlinear Equations with Economic Applications," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 644-671, August.
    3. Gerard van der Laan & Dolf Talman & Zaifu Yang, 2005. "Solving Discrete Zero Point Problems with Vector Labeling," Tinbergen Institute Discussion Papers 05-106/1, Tinbergen Institute.
    4. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2007. "Combinatorial Integer Labeling Thorems on Finite Sets with an Application to Discrete Systems of Nonlinear Equations," Discussion Paper 2007-88, Tilburg University, Center for Economic Research.
    5. Talman, Dolf & Yang, Zaifu, 2009. "A discrete multivariate mean value theorem with applications," European Journal of Operational Research, Elsevier, vol. 192(2), pages 374-381, January.
    6. G. Laan & A. J. J. Talman & Z. Yang, 2010. "Combinatorial Integer Labeling Theorems on Finite Sets with Applications," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 391-407, February.
    7. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2007. "A vector labeling method for solving discrete zero point and complementarity problems," Other publications TiSEM 070869d0-4e42-4d34-85f9-b, Tilburg University, School of Economics and Management.
    8. Gerard van der Laan & Dolf Talman & Zaifu Yang, 2004. "Solving Discrete Zero Point Problems," Tinbergen Institute Discussion Papers 04-112/1, Tinbergen Institute.
    9. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.