Author
Listed:
- César Anzola Bravo
- Paola Poveda
Abstract
Food prices have consistently been one of the leading contributors to Colombia’s inflation rate. They are particularly sensitive to exogenous factors such as extreme weather events, supply chain disruptions, and global commodity price shocks, often resulting in sharp and unpredictable price fluctuations. This document pursues two main objectives. First, it aims to estimate and evaluate methods for forecasting 33 homogeneous food inflation baskets, which together constitute the total food Consumer Price Index (Food CPI), offering tools that can assist policymakers in anticipating the drivers of future inflation. This includes both traditional time series models and modern machine learning approaches. Second, it seeks to enhance the interpretability of model predictions through explainable AI techniques. To achieve this, we propose a variable lag selection algorithm to identify optimal feature-lag pairs, and employ SHAP (SHapley Additive exPlanations) values to quantify the contribution of each feature to the model’s forecast. Our findings indicate that machine learning models outperform traditional approaches in forecasting food inflation, delivering improved accuracy across most individual baskets as well as for aggregated food inflation. *****RESUMEN: Los precios de los alimentos han sido uno de los principales factores que contribuyen a la inflación en Colombia. Estos son particularmente sensibles a factores externos como choques climáticos, interrupciones en las cadenas globales de valor y choques en los precios de los productos básicos a nivel global, lo que resulta en fluctuaciones impredecibles de precios. Este documento tiene dos objetivos. En primer lugar, busca estimar y evaluar métodos para pronosticar 33 canastas homogéneas de inflación de alimentos, ofreciendo herramientas que puedan ayudar a los hacedores de política anticipar los factores que afectan la inflación de alimentos futura. Esto incluye tanto modelos tradicionales de series de tiempo como enfoques modernos de machine learning. En segundo lugar, se propone mejorar la interpretabilidad de las predicciones de los modelos mediante técnicas de explainableAI. Para ello, proponemos un algoritmo de selección de variables que identifique las variables explicativas más relevantes, y utilizamos valores SHAP (SHapley Additive exPlanations) para cuantificar la contribución de cada variable explicativa en las predicciones del modelo. Nuestros hallazgos indican que los modelos de machine learning superan a los enfoques tradicionales en el pronóstico de la inflación de alimentos, logrando una mayor precisión tanto en la mayoría de las canastas individuales como en la inflación de alimentos agregada.
Suggested Citation
César Anzola Bravo & Paola Poveda, 2025.
"Forecasting Disaggregated Food Inflation Baskets in Colombia with an XGBoost Model,"
Borradores de Economia
1335, Banco de la Republica de Colombia.
Handle:
RePEc:bdr:borrec:1335
DOI: 10.32468/be.1335
Download full text from publisher
More about this item
Keywords
;
;
;
;
;
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:borrec:1335. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.