IDEAS home Printed from https://ideas.repec.org/p/bcc/wpaper/2011-12.html
   My bibliography  Save this paper

The Uniform World Model: A Methodology for Predicting the Health Impacts of Air Pollution

Author

Listed:
  • Joseph V. Spadaro

Abstract

Throughout history, technological development and economic growth has led to greater prosperity and overall standard of living for many people in society. However, along with the benefits of economic development comes the social responsibility of minimizing the mortality and morbidity health impacts associated with human activities, safeguarding ecosystems, protecting world cultural heritage and preventing integrity and amenity losses of man-made environments. Effects are often irreversible, extend way beyond national borders and can occur over a long time lag. At current pollutant levels, the monetized impacts carry a significant burden to society, on the order of few percent of a country’s GDP, and upwards to 10% of GDP for countries in transition. A recent study for the European Union found that the aggregate damage burden from industrial air pollution alone costs every man, woman and child between 200 and 330 € a year, of which CO2 emissions contributed 40 to 60% (EEA 2011). In a sustainable world, an assessment of the environmental impacts (and damage costs) imposed by man\'s decisions on present and future generations is necessary when addressing the cost effectiveness of local and national policy options that aim at improving air quality and reducing greenhouse gas emissions. The aim of this paper is to present a methodology for calculating such adverse public health outcomes arising from exposure to routine atmospheric pollutant emissions using a simplified methodology, referred to as the Uniform World Model (UWM). The UWM clearly identifies the most relevant factors of the analysis, is easy to implement and requires only a few key input parameters that are easily obtained by the analyst, even to someone living in a developing country. The UWM is exact in the limit all parameters are uniformly distributed, due to mass conservation. The current approach can be applied to elevated and mobile sources. Its robustness has been validated (typical deviations are well within the ±50% range) by comparison with much more detailed air quality and environmental impact assessment models, such as ISC3, CALPUFF, EMEP and GAINS. Several comparisons illustrating the wide range of applicability of the UWM are presented in the paper, including estimation of mean concentrations at the local, country and continental level and calculation of local and country level intake factors and marginal damage costs of primary particulate matter and inorganic secondary aerosols. Relationships are also provided for computing spatial concentration profiles and cumulative impact or damage cost distributions. Assessments cover sources located in the USA, Europe, East Asia (China) and South Asia (India).

Suggested Citation

  • Joseph V. Spadaro, 2011. "The Uniform World Model: A Methodology for Predicting the Health Impacts of Air Pollution," Working Papers 2011-12, BC3.
  • Handle: RePEc:bcc:wpaper:2011-12
    as

    Download full text from publisher

    File URL: http://www.bc3research.org/index.php?option=com_wpapers&task=downpubli&iddoc=42&repec=1&Itemid=279
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph V. Spadaro & Sérgio H. Faria & Anil Markandya, 2013. "Decarbonising urban transportation," Working Papers 2013-14, BC3.

    More about this item

    Keywords

    Air Pollution; Urban Air Quality; Particulate Matter; Air Quality Modeling; Health Impact Assessment; Loss of Life Expectancy; Damage Costs of Air Pollution;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcc:wpaper:2011-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sergio Henrique Faria (email available below). General contact details of provider: https://www.bc3research.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.